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A new methodology based on Diffusion Weighted Magnetic Resonance
Imaging (DW-MRI) and Graph Theory is presented for characterizing
the anatomical connections between brain gray matter areas. In a first
step, brain voxels are modeled as nodes of a non-directed graph in
which the weight of an arc linking two neighbor nodes is assumed to be
proportional to the probability of being connected by nervous fibers.
This probability is estimated by means of probabilistic tissue
segmentation and intravoxel white matter orientational distribution
function, obtained from anatomical MRI and DW-MRI, respectively.
A new tractography algorithm for finding white matter routes is also
introduced. This algorithm solves the most probable path problem
between any two nodes, leading to the assessment of probabilistic brain
anatomical connection maps. In a second step, for assessing anatomical
connectivity between K gray matter structures, the previous graph is
redefined as a K+1 partite graph by partitioning the initial nodes set in
K non-overlapped gray matter subsets and one subset clustering the
remaining nodes. Three different measures are proposed for quantify-
ing anatomical connections between any pair of gray matter subsets:
Anatomical Connection Strength (ACS), Anatomical Connection
Density (ACD) and Anatomical Connection Probability (ACP). This
methodology was applied to both artificial and actual human data.
Results show that nervous fiber pathways between some regions of
interest were reconstructed correctly. Additionally, mean connectivity
maps of ACS, ACD and ACP between 71 gray matter structures for
five healthy subjects are presented.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Random motion of water molecules inside the brain is
influenced by the architectural properties of tissues. Water
diffusion is known to be highly anisotropic in certain white matter
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regions, with preferential movement along the nervous fibers. A
recent development of a non-invasive technique which quantifies
water diffusion process, known as Diffusion Weighted Magnetic
Resonance Imaging (DW-MRI), has allowed to obtain structural
information about the intravoxel axon arrangement (Basser et al.,
1994; LeBihan, 2003). Based on this information, fiber tracto-
graphy arises as a crucial technique to attain a better in vivo
anatomical characterization of the brain (Mori et al., 1999; Conturo
et al., 1999; Tuch, 2002; Parker et al., 2002; Koch et al., 2002;
Behrens et al., 2003). Also, quantification of the anatomical
connectivity between different gray matter structures would be a
significant contribution to the understanding of functional integra-
tion of the human brain (LeBihan et al., 2001; Koch et al., 2002;
Ramnani et al., 2004; Sporns et al., 2005; Sotero et al., 2007).

Reconstruction of nervous fiber trajectories is an extensively
treated topic. In the traditional Streamline Tractography (SLT)
approach (Mori et al., 1999; Conturo et al., 1999; Basser et al.,
2000), a continuous trajectory is traced tangential to the direction of
the principal eigenvector of the diffusion tensor measured at each
voxel using a discretization step smaller than the size of the voxel.
This approach usually fails in voxels where fibers cross each other,
merge, kiss or diverge, and it is very sensitive to the influence of
MR signal noise (Basser and Pajevic, 2000; Lori et al., 2002). In
those situations, traced path strays from the real trajectory of
nervous fibers. To overcome these limitations, modified Streamline
Tractography (mSLT) methods based on Diffusion Tensor Deflec-
tion (Weinstein et al., 1999; Lazar et al., 2003) and Probabilistic
Monte-Carlo Method (Parker and Alexander, 2003) have been
proposed. The former uses the entire diffusion tensor to deflect the
propagation direction computed in the previous step. The latter uses
the uncertainty of the estimated nervous fiber orientation to compute
a large number of possible paths from the seed point; a quantity can
be assigned to each path reflecting some connectivity relationship
between seed and target points.

In recent years, many other mSLT methods have been proposed
(Tuch, 2002; Tench et al., 2002; Behrens et al., 2003; Hagmann
et al., 2003). Usually, they define the anatomical connection pro-
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bability between seed and target voxels as the ratio between the
number of shared paths and the number of generated paths.

In contrast to SLT and mSLT methods, Level Set-Based Fast
Marching (FM) techniques (Parker et al., 2002; Staempfli et al.,
2006) express the tractography in terms of a wave front that
emanates from a source point and whose evolution is controlled by
the diffusion data. FM methods have two advantages over the SLT
and mSLT methods: 1, better performance in situations of
branching and fiber crossing, and 2, direct estimation of the
probability of white matter connectivity between two points (Jun
Zhang et al., 2005).

In FM methods, front evolution speed and direction in a voxel
depend on the measured diffusion tensor. Generally, all proposed
FM algorithms have used only the principal eigenvector of the
diffusion tensor, therefore these methods fail to reconstruct fiber
pathways in those places where fibers cross, merge, kiss or diverge.
For dealing with this limitation, recently Staempfli et al. (2006)
proposed an advanced implementation of FM (aFM), combining
the advantages of classical FM and the tensor deflection approach.
The objective is to take into account the entire information
contained in the diffusion tensor. As an intrinsic limitation, aFM
needs an empirical threshold value to classify geometrically the
diffusion tensor ellipsoid (i.e. prolate, oblate or spherical tensor)
and therefore to set the corresponding speed function. Also, only
four possible situations of voxel transitions are considered, which
are those involving prolate and oblate cases. Thus, some
combinations of more than two fibers crossing may be ignored.

On the other hand, although probability of connection between
seed and target voxels has been previously used (Tuch, 2002;
Parker et al., 2002; Koch et al., 2002; Parker et al., 2003; Behrens
et al., 2003; Staempfli et al., 2006), the generalization of this
concept to characterize anatomical connections between different
brain gray matter structures is not straightforward. An initial
approach (Iturria-Medina et al., 2005) was proposed to quantify the
anatomical connection strength (ACS) between two gray matter
structures using geometrical information from probabilistic fiber
paths. ACS was considered proportional to the total area comprised
by the fiber connector volume over the surfaces of the two
connected structures. This was evaluated by counting the number
of superficial voxels involved in the connection, where each voxel
is weighted according to the validity of the paths that connect it
with the second structure. A connectivity matrix estimated using
the aforementioned approach was employed to couple several brain
areas in a realistic neural mass model for the EEG generation,
obtaining physiologically plausible results (Sotero et al., 2007).

In addition, recently Hagmann et al. (2006) proposed a
technique based on graph theory to study the connectivity between
small cortical areas. Nodes of a graph correspond to small cubic
regions of interest (ROI) covering the brain gray matter. Fiber
tractography is performed by initiating fibers over the whole brain
and arc weight between any two ROIs is assigned according to the
connection density between them. An unweighted version of this
graph was constructed in order to analyze its small world and
hierarchical properties.

In this work, our interest lies in the development of a DW-MRI-
based methodology, capable of characterizing directly anatomical
connections between brain gray matter structures, which can be
defined according to cytoarchitectonic, histological or other sort of
anatomical and functional information. In order to accomplish this,
the graph framework is employed to introduce a new anatomical
connectivity model. Firstly, each voxel of the cerebral volume is
assumed to be a node of a non-directed weighted graph. In this
case, the weight of an arc is considered to be proportional to the
probability of the existence of a nervous fiber connecting its
corresponding nodes. Probabilistic tissue segmentation and
intravoxel white matter orientational distribution function (ODF)
are combined to compute the arc weight. Secondly, an iterative
algorithm is used to solve the most probable path problem between
any two nodes in the graph, which we will indistinctly refer to as
the most reliable connection route between these nodes. This
approach allows to asses probabilistic anatomical connectivity
maps between brain voxels. Finally, in order to assessing
anatomical connectivity between K gray matter structures, the
graph is partitioned in the corresponding K non-overlapped subsets
and one subset containing the remaining nodes. This allowed for
the definition of three different anatomical connectivity measures
between any pair of gray matter structures: Anatomical Connection
Strength (ACS), Anatomical Connection Density (ACD) and
Anatomical Connection Probability (ACP).

Methods

This section will be devoted to present some basic elements of
graph theory, as well as the principal steps of the proposed
methodology: 1, definition of a Brain Graph, 2, introduction of an
iterative fiber tracking algorithm and quantification of node–node
connectivity and 3, definition of anatomical connectivity measures
between gray matter areas. Details on experimental data to be used
and its preprocessing will also appear.

Elements of graph theory

A graph G=[N,A] is defined by a set N of n elements called
nodes and a set A of elements called arcs (Gondran and Minoux,
1984). Arcs link pairs of nodes. The number of elements of a set N
is known as the cardinality of N and it is denoted by |N|. Given an
arc ai,j linking ri and rj nodes (i, j=1,…,n), we will refer to ri as
the initial endpoint and to rj as the terminal endpoint of ai,j. A non-
directed graph is that in which the direction of the arcs (i.e.
distinction between initial and terminal nodes) is not established.
Graphically, nodes are represented by points and arcs by lines
(without arrow) joining them.

A graph G=[N,A] is called K partite if the set of its n nodes
admits a partition into K pairwise disjoint independent subsets (see
Fig. 1). A path ρi1…iL, with L−1 steps, between nodes ri1 and riL is
an ordered subset of L−1 arcs {ai1i2; ai2i3;…; aiL −1iL}.

Each arc a∈A is assigned a number w(a)∈R, denominated
the weight of the arc. A very large number of path finding problems
in graph theory use the weight of the arc to optimize convenient
cost functions. For example, if the weight of an arc is defined as its
length, the problem of the shortest path between two nodes is
equivalent to find the path with the minimum sum of its arc
weights. Similarly, the weight of the arc can be interpreted as the
cost of transportation along it, the time required to pass through it
or the probability of its existence. Specifically, in a weighted non-
directed graph, where each arc weight is considered as the
probability of its existence, the problem of searching the most
probable path between nodes ri1 and riL is equivalent to find the
path ρi1…iL with maximum total probability:

P½qi1 N iL � ¼ wðai1i2Þ
YL�1

k¼2

wcondðaik ikþ1 jaik�1ik Þ; ð1Þ



Fig. 1. Schematic representation of a multi partite graph (specifically, a
tripartite graph). An initial graph of 8 nodes is partitioned in three disjoint
independent node subsets, A1, A2 and A3, with 1, 3 and 4 nodes,
respectively.
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where the term wcond (aikik + 1
|aik −1ik) is the conditional weight of the

arc aikik + 1
given arc aik −1ik.
Defining a brain graph

Consider an orthogonal grid defining voxelsfrYi¼ðxi;yi;ziÞ;i ¼1::ng
in the space of a magnetic resonance image (or other neuroimaging
technique) with anatomical information about the brain (e.g. a T1-
weighted image or a Computer Tomography image). Let N be the
set of voxels having a non-zero probability of belonging to some
cerebral tissue. Then, we define as a Brain Graph the weighted non-
directed graph Gbrain= [N,A] where A is the set of white matter links
between contiguous voxels in N. Graphically, Gbrain is a discrete set
of points (nodes) representing voxels and a set of lines (arcs)
representing connections between contiguous voxels (see Fig. 2a).
Fig. 2. Basic elements of the non-directed weighted Brain Graph Gbrain. (a) Each
belonging to the brain tissue is considered a node in Gbrain. (b) Anatomical informat
function (ODF) maps are used to define the weights of the arcs in Gbrain. Each OD
The weight of an arc is chosen so that it represents the probability
that linked nodes are really connected by nervous fibers. A nearest
neighborhood of the i-th node, denoted as Ni

neig, is the set of all its
contiguous nodes. In our orthogonal grid, the maximum cardinality
of Ni

neig is 26.
In the present approach, arc weight w(aij) (aij∈A) is

proposed to take into account both the probability of nodes rYi
and rYj to belong to gray/white matter and the probability of
nervous fibers to be oriented around the direction of the arc aij.
Mathematically:

wðaijÞuwðajiÞ
¼ Pmat rYið ÞPmat rYj

� �
Pdiff rYi;DrYij

� �þ Pdiff rYj;DrYji
� �� �

;
ð2Þ

where the two basics functions Pmat and Pdiff enclose anato-
mical and diffusion information respectively (Fig. 2b). The first
of these functions is defined as follows:

Pmat rYð Þ ¼ aPWM rYð Þ þ PGM rYð Þ
1þ ða� 1ÞPWM rYð Þ ; ð3Þ

where PWM and PGM are probabilistic maps of white and gray
matter (WM and GM) respectively and α is a tuning parameter.
As we hope to associate arcs in Gbrain to probable nervous fiber
pathways, the presence of white matter (given by PWM) to arc
weights could be enhanced by making α≥1.

The other function, Pdiff rYj;DrYij
� �

, characterizes fiber coherence
along DrYij ¼ rYj � rYi, which is the direction of the arc aij, and can
be inferred from DW-MRI images using methods for the
description of the intravoxel white matter structure. Here,
Pdiff rYj;DrYij

� �
is assumed to be the integral of the ODF over a

solid angle β around DrYij (Fig. 3):

Pdiff rYi;DrYij
� � ¼ 1

Z

Z
b

ODF rYi;DrYij
� �

dS: ð4Þ

Z is a normalization constant chosen to fix to 0.5 the maximum
value of the set Pdiff rYi;DrYij

� �� �
8rYjaNneig

i
. Note that generally

Pdiff rYi;DrYij
� �

pPdiff rYj;DrYji
� �

.

voxel of the T1-weighted image volume (of dimensions NX, NY, NZ∈ℕ)
ion about the presence of white and gray matter and orientational distribution
F is a 3-D representation of the fiber orientation within a single voxel.



Fig. 4. Hypothetical simple 2D graph. The set of 36 nodes is consecutively
enumerated, the nodes i1=11 and iq=25 in the figure are linked by
two paths q1 rYi1 ;r

Y
iq

� �
and q2 rYi1 ;r

Y
iq

� �
. For path q1 rYi1 ;r

Y
iq

� � ¼ u rYi1 ;r
Y
i2ð Þ;f

u rYi2 ;r
Y
i3ð Þ; N ;u rYiq�1 ;r

Y
iq

� �g the sequence of nodes i1, i2, … , iq− 1, iq is 11,
16, 15, 20, and 25. For q2 rYi1 ;r

Y
iq

� �
the sequence is: 11, 17, 22, 28, 33, 27, 32

and 25. The probability of path ρ2 is null, P[ρ2 (ri1, riq)]=0, because this
path has a curvature in node 33 that exceeds the critical angle /critical ¼

p
2
.

In particular / ¼ ar cos
DrYi5 ;i6 ;Dr

Y
i4 ;i5

jDrYi5 ;i6 jjDrYi4 ;i5 j
 !

¼ 3p
4
, where i4=28, i5=33 and

i6=27. In this case path ρ1 is more probable than ρ2.

Fig. 3. The solid angle β around vector DrYij defines a cone in which the
nervous fibers passing from node rYi to node rYj should be contained. It is
defined for all 26 nearest neighbors in the same way.
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Eq. (2) quantitatively combines the information of probabilistic
tissue segmentation of the brain and diffusion weighted MRI data.
This ensures that only those pairs of nodes with high probability of
belonging to gray/white matter and high probability of sharing
fibers will have higher weights, which is equivalent to have high
probability of being connected. It should be kept in mind that the
DW-MRI profile is symmetric under the transformation: rYY� rY.
This hinders the possibility to distinguish between efferent and
afferent projections in a nervous tracking process.

Fiber tracking and node–node connectivity

In this work, the key idea on which fiber tracking and node-
node connectivity is based derives from “the most probable path
problem” between nodes of interest in the defined Brain Graph.
Initially, we assumed that any possible path between these nodes
corresponds to the anatomic trajectory of a probable nervous fiber.
Then, an iterative algorithm is employed for finding the most
probable trajectory, which is considered to evaluate the real
existence of fiber pathways between these points.

Considering a given path ρs…p, with L-1 steps, that belongs to the
set of all possible paths between nodes rYs and rYp; the weights of any
two consecutives arcs aik −1ik and aikik + 1

are not independent, since
they share the term Pmat rYikð Þ. Given the existence of arc aik −1ik, the
conditional weight of arc aikik + 1

results:

wcond aik ikþ1 jaik�1 ik

� �
¼ Pmat rYikþ1

� �
d Pdiff rYik ;Dr

Y
ik ikþ1

� �þ Pdiff rYikþ1;Dr
Y
ikþ1 ik

� �� �
: ð5Þ

In order to consider physiological and anatomical evidences about
fiber bundles shape in the brain as a priori information, a modified
version of Eq. (1) includes a function ψ which penalizes path
curvature, as used in other tracking methods (see for example Tuch,
2002):

P½qs N p� ¼ wðas;i2Þ
YL21
k¼2

wcondðaik ikþ1 jaik�1ik ÞWðqik�1 N ikþ1
Þ; ð6Þ
where

Wðqik�1 N ikþ1
Þ ¼ f ð/Þ if / < /critical

0 otherwise
:

�

The angle ϕ is defined using the two arcs of the subpath
ρik −1…ik + 1

:

/ ¼ ar cos
DrYik ikþ1Dr

Y
ik�1ik			DrYik ikþ1

						DrYik�1ik

			
0
B@

1
CA ð7Þ

were ϕcritical is a critical threshold curvature angle and f(ϕ) is a
curvature function. Otherwise stated, in this study we will choose
ϕcritical =π/2 and f(ϕ)=1, which is equivalent to allow only those
trajectories with curvature angles smaller than 90°.

In order to illustrate formulation (6), Fig. 4 shows a
hypothetical 2D graph. Probability of path ρ2 is zero because it
has a curvature in one of its nodes that exceed the critical angle
ϕcritical, and therefore the path ρ1 is more reliable than ρ2.

The estimated nervous fiber trajectory running from rYs to rYp will
be given by the most reliable path:

q̃s N p ¼ argmax
8qs N p

P½qs N p�
� �

: ð8Þ

To solve Eq. (8) we propose an iterative algorithm (see
Appendix A), which is an adaptation of the Moore and Dijstra
algorithm (Dijkstra, 1959; Moore, 1959; Gondran and Minoux,



649Y. Iturria-Medina et al. / NeuroImage 36 (2007) 645–660
1984) to solve the shortest path problem in a graph. The resulting
map M rYs;rYp

� �
is the probability of the path between nodes rYs and

rYp of maximum reliability, which is the solution of Eq. (8).
In general, the anatomical connectivity between nodes rYs and rYp

can be defined as a function ‘g’ of the arc weights of ρ̃s…p and the a
priori term Cprior rYs;rYp

� �
:

Cnode rYs;rYp
� � ¼ g wðas i2Þ; N ; wðaiL�1pÞ; Cprior rYs;rYp

� �� �
; ð9Þ

Cprior rYs;rYp
� �

represents the a priori information about the connectiv-
ity between nodes rYs and rYp, which could come from histological
tracing methods or other neuroimaging techniques (e.g. fMRI, EEG/
MEG tomography, PET, etc.). When there is not prior information
available, Cprior rYs;rYp

� �
may be a non-informative prior or not

evaluated at all, as will be the case in this work.
A straightforward definition of the function ‘g’ could be

M rYs;rYp
� �

. However, this measure decreases strongly with the path
longitude, stating a high contrast in connectivity values between
pairs of near and distant nodes. In this work, similarly to Parker et
al. (2002) and Staempfli et al. (2006), the anatomical connectivity
measure is defined as the lowest weight of the arcs belonging to the
most probable path, i.e. ‘g’ is the minimum function and equation
(9) becomes:

Cnode rYs;rYp
� � ¼ min

8aaq̃ s N p

ðwðaÞÞ: ð10Þ

Zone-zone connectivity

In the graph framework presented here, the evaluation of
connectivity between clusters of nodes in Gbrain will be used for
defining of connectivity measures between brain anatomical areas.

Let the graph Gbrain= [N,A] be redefined as a K+1 partite
undirected graph where the nodes set N is partitioned in K non-
overlapped gray matter subsets Nk, k=1,…,K, and one subset Nrest

clustering all voxels not belonging to brain gray matter (i.e. cerebral
spinal fluid and white matter). The K gray matter clusters represent
the anatomical areas, denoted by A1,…,AK. Generally those areas are
segmented based upon cytoarchitectonic, histological or other sort of
anatomic and functional information (e.g. Broadmann areas) through
manual, automatic or semi automatic procedures.

In this context the arcs are defined directly between nodes of

different areas. The term aij rYm;rYnð Þ represents the arc that links

node rYmaNi with node rYnaNj. The weight of this arc x aij rYm;rYnð Þ� �
will be a function of the node–node connectivity measure defined
previously by Eq. (10). This can be expressed in general by the
following formula:

x aij rYm;rYnð Þ ¼ h Cnode rYm;rYnð Þ; Pi rYmð Þ; Pj rYnð Þ� �
:

� ð11Þ

This expression also includes the uncertainty of each node

rYsaNk̄ to be a member of its anatomical area k̄ through a

probability term Pk̄ rYsð Þ. This probability comes from a Maximum
Probability Segmentation Map (Mazziotta et al., 1995), which
means that Pk̄ rYsð Þ ¼ max

k¼1::K
Pk rYsð Þð Þ.

Particularly, for the sake of simplicity, we will assume the
following expression for the weight of the arc:

x aij rYm;rYnð Þ� � ¼ Cnode rYm;rYnð ÞPi rYmð ÞPj rYnð Þ: ð12Þ
Additionally, it is necessary to define a subdivision of each
cluster Nk into a boundary nodes set Nk

s and a core nodes set Nk
c,

such that Nk
s∪Nk

c =Nk. The boundary nodes set Nk
s comprises

those voxels having at least one neighbor that does not belong to
Nk. Finally, a general definition for zone–zone connectivity is
established as:

CzoneðAi;AjÞ ¼ t x aij rYm;rYnð Þ� �
;CpriorðAi; AjÞ

� � ð13Þ

for all rYmaNi and rYnaNj. Similar as in Eq. (9), the termCprior (Ai, Aj)
represents the a priori information about the connection between
areas Ai and Aj.

The general zone-zone connectivity measure (13) can be
reasonably restricted to white matter connections. This is accom-
plished by taking into account only connectivity between voxels of
the surface of the corresponding anatomical areas, since voxels in
the core nodes set Nk

c belong to gray matter and connections to (and
among) them are beyond the scope of the present methodology.
Based on this, we introduce three different anatomical connectivity
measures, namely: Anatomical Connection Strength (ACS), Ana-
tomical Connection Density (ACD) and Anatomical Connection
Probability (ACP). Let us explain each in detail:

• ACS is required to be a measure of the potential information flow
between the connected areas Ai and Aj. This would be related to
the cross sectional area of the fiber bundle connecting the surfaces
of the zones, which will give an estimate of the amount of nervous
fibers shared by these areas. Therefore, we propose to estimate the
ACS by counting the nodes on the surface of Ai and Aj involved in
the connection, where each node is weighted by its anatomical
connectivity value with the surface of the second zone. The
connectivity value of node rYnaN s

j will be denoted as
fYrn 0VfYrnV1
� �

and defined as the maximum arc weight among all
connections between rYn and any rYmaN s

i :

fYrn ¼ max
8 rYmaN s

i

x aij rYn;rYmð Þ� �� �
: ð14Þ

Then, the final expression for the ACS reads:

CACS
ZoneðAi;AjÞ ¼

X
8rYmaN s

i

fYrm þ
X

8rYnaN s
j

fYrn ; ð15Þ

where we have explicitly written two terms, one quantifying
connections of the region Ai with Aj, and the other quantifying
connections of the region Aj with Ai.

• ACD is searched as a measure of the fraction of the surface
involved in the connection with respect to the total surface
of both areas. Thus, it can be estimated as the ACS relative
to the number of nodes belonging to the surfaces of Ai and
Aj:

CACD
Zone Ai;Aj

� � ¼ CACS
ZoneðAi;AjÞ
jN s

i j þ jN s
j j

: ð16Þ

• ACP is searched as a measure of the probability of two areas to
be connected at least by a single connection. Then, we define it
as the maximum connectivity value between nodes of areas Ai

and Aj:

CACP
ZoneðAi;AjÞ ¼ max max

8rYmaN s
i

fYrm ; max
8rYnaN s

j

fYrn

 !
: ð17Þ



Fig. 5. Phantom tract configurations obtained from the Centre for
Neuroimaging Sciences, Institute of Psychiatry, King's College London
(http://neurology.iop.kcl.ac.uk/dtidataset/Common_DTI_Dataset.htm). The
configurations used in this study were: (a) straight crossing, (b) curve
crossing, and (c) tract inspired in the maple leaf (Feuille trajectory).
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Experimental data

Artificial data
Diffusion tensor phantom simulated data sets were obtained from

the Centre for Neuroimaging Sciences, Institute of Psychiatry,
King's College London. The DW-MRI data were simulated using a
spin-echo sequence with the following parameters: 30 diffusion
encoding directions (Jones et al., 1999); b=1000 s/mm2; image
resolution 2×2×2 mm3; TE=160 ms. T2 values for the tract and
background were assumed to be the same as white matter (65 ms)
and grey matter (95 ms) at 1.5 T, respectively. Three data sets are
available with varying levels of SNR (7, 15 and 31).

Three out of ten different tract configurations were selected to
evaluate the performance of the proposed methodology (see Fig.
5): straight crossing, curved crossing and the tract inspired in the
maple leaf (Feuille trajectory). For each of them, the six diffusion
elements, the eigenvectors and the corresponding T2-weighted
images for each SNR data set were provided. The corresponding
ODF maps were estimated using a simple procedure described in
Appendix B. A threshold value was applied to the T2-weighted
image in order to create a binary mask (Pmat) expressing the
presence or not of gray/white matter tissue.

Additionally, two other artificial diffusion data sets were
created using the following geometric parameters: 55×55×55
voxels; image resolution 2×2×2 mm3. The first artificial data set
represents a branching fiber tract (Fig. 6a). In branching areas, the
first and second eigenvalues of the diffusion tensor were assumed
to be equal (i.e. oblate tensor). The second artificial data set
represents a fiber crossing of three orthogonal tracts (Fig. 6b). In
crossing areas, the three tensor's eigenvalues were assumed to be
approximately the same (i.e. spherical tensor). In both configura-
tions, three different SNR (7, 15 and 31) were considered to create
the diffusion tensor elements. ODF maps were estimated using the
procedure described in Appendix B.

Human data
Using a standard diffusion gradient direction scheme (twelve

diffusion-weighted images and a b=0 image), DW-MRI data were
acquired from 5 healthy subjects using a MRI scanner Siemens
Symphony 1.5 T (Erlangen, Germany) and a single shot EPI
sequence. To each subject, two interleaved sets of 25 slices of
6 mm thickness with a distance factor of 100% were acquired with
the following parameters: b=1200 s/mm2; FOV=256×256 mm2;
acquisition matrix=128×128; corresponding to an ‘in plane’
spatial resolution of 2×2 mm2; TE/TR=160 ms/7000 ms. Two
interleaved sets were necessary because it was impossible to cover
the whole head with a good spatial resolution using a single set due
to a pulse sequence limitation (max: 35 slices). Both sets were
joined to form a volume of 50 contiguous slices of 3 mm thickness
covering the whole brain for each subject. The aforementioned
acquisition was repeated 5 times to improve signal to noise ratio
(SNR). In order to improve EPI quality, magnitude and phase
difference images of a T2 gradient echo field mapping sequence
were acquired with TE=7.71 ms and 12.47 ms.

Also, a 3D high resolution T1-weighted image (MPRAGE)
covering the whole brain was acquired with the following
parameters: 160 contiguous slices of 1 mm thickness in sagittal
orientation; in plane FOV=256×256 mm2, corresponding to an in
plane spatial resolution of 1×1 mm2; TE/TR=3.93 ms/3000 ms.

Although the scanner sequence performs an eddy current
automatic correction, in order to remove remaining distortions an
affine 3D mutual normalized information-based registration
method (Studholme et al., 1998) was used. The DW-MRI images
were attempted to be corrected from EPI distortions using the SPM
FieldMap toolbox (Hutton et al., 2002).

T1-weighted 3D anatomical image was registered to the b=0
image using a normalized mutual information method (Studholme
et al., 1998). Using the SPM2 toolbox (available at http://www.fil.
ion.ucl.ac.uk/spm/software/spm2), a low dimensional normalization
(Ashburner and Friston, 1999) to a stereotaxic space MNI (Evans
and Collins, 1993) was estimated for the registered T1-weighted
image, which was written with an spatial resolution of
2×2×2 mm3. Employing the aforementioned transformation,
DW-MRI data were fitted to a diffusion tensor (Basser et al.,
1994) in each voxel of the stereotaxic space. Tensors were rotated

http://www.fil.ion.ucl.ac.uk/spm/software/spm2
http://www.fil.ion.ucl.ac.uk/spm/software/spm2
http://neurology.iop.kcl.ac.uk/dtidataset/Common_DTI_Dataset.htm


Fig. 6. Additional artificial tract configurations created to explore the
performance of the proposed methodology. (a) Branching fiber tract. (b)
Fiber crossing of three orthogonal tracts.
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according to the method presented by Alexander and coworkers
(Alexander et al., 2001).

Probabilistic tissues segmentations of gray matter, white matter
and cerebral spinal fluid (Ashburner and Friston, 2000) were
obtained from the normalized T1-weigthed image using the SPM2
toolbox. The gray and white matter segmentation probabilistic maps
(PGM and PWM, respectively) were used to construct the anatomical
information function Pmat evaluating Eq. (3), with α=1. Also, the
normalized T1-weigthed image was automatically segmented into
71 gray matter structures using the IBASPM toolbox (available at
http://www.fil.ion.ucl.ac.uk/spm/ext/#IBASPM) (Alemán-Gómez et
al., 2006) and the average Probabilistic MRI Atlas created by the
Montreal Neurological Institute (Collins et al., 1994; Evans et al.,
1994). For evaluating the arcs weight in expression (11), the
probability of each voxel rYsaNk to belong to k-th anatomical area
was set to unity ðPk rYsð Þ ¼ 1Þ, although as it was mentioned in
Section 2.4, this probability can be more realistically evaluated
employing Maximum Probability Segmentation Maps (Mazziotta
et al., 1995). Again, the ODF maps were estimated using the
procedure described in Appendix B.
Results

Artificial data

The performance of the proposed methodology was explored
using artificial DW-MRI data. Firstly, anatomical connections
between different regions of interest (ROIs), defined for the
straight crossing, curve crossing and Feuille trajectory were
estimated (see Fig. 7). Each ROI consists of seven contiguous
voxels representing a line perpendicular to the fiber tract being
analyzed. Left column (Figs. 7a, c and e) shows the reconstructed
connection routes (most probable paths) between ROI1 and the
others, with SNR level of 15. These results illustrate the ability of
our method to reconstruct complex fiber tracts configurations (see
for example the Feuille trajectory results, Fig. 7e). Complementa-
rily, right column (Figs. 7b, d and f) shows the corresponding
maximum voxel–voxel connectivity values with ROI1 (i.e. each
voxel of the image volume was assigned its maximum voxel–voxel
connectivity value with the voxels of ROI1). Note that, although
for the straight crossing and curve crossing the method provides
anatomical connection routes between ROI1 and ROI4, the
corresponding voxel–voxel connectivity values indicate the low
probability of connection between these ROIs, which is in
accordance with the characteristics of the tracts configurations. In
contrast, the obtained voxel–voxel connectivity values between
ROI1–ROI2 and ROI1–ROI3 indicate the high probability of
connection between these ROIs.

Secondly, we analyzed the branching configuration shown in
Fig. 6a. Both Fig. 8 and Table 1 show the results before and after a
hypothetical loss of the white matter integrity. Three different ROIs
were defined (Fig. 8a): ROI1 consists of two contiguous voxels at
the left end of the fiber tract, ROI2 consists of four contiguous
voxels at the upper right end of the tract and ROI3 is conformed by
a single voxel at the bottom right end of the tract. For simulating a
hypothetical loss of the white matter integrity (hereinafter, WM-
affectation, for brevity), the values of two voxels in the binary
mask (Pmat) were set to zero (each voxel located symmetrically at
the upper right tract or at the bottom right tract, see Fig. 8b). Figs.
8c and d correspond to the maximum voxel–voxel connectivity
values between the voxels of ROI1 and the rest of voxels before
and after the WM-affectation, respectively. Also, Table 1 helps us
to understand the interrelationship between the ACS, ACD and
ACP measures and their sensitivity to white matter affectation. For
example, note that before WM-affectation the CZone

ACS (ROI1, ROI2)
is around twice the CZone

ACS (ROI1, ROI3) since the total number of
superficial voxels in ROI1 and ROI2 duplicates the total number of
superficial voxels in ROI1 and ROI3 (i.e. 6 and 3 voxels,
respectively). However, CZone

ACD (ROI1, ROI2) and CZone
ACD (ROI1,

ROI3) are similar and the small difference between them can be
explained by the different geometrical characteristics of the defined
ROIs. In this case, both ROI2 and ROI3 present very high
probabilities of connection with ROI1 for all SNR levels. After the
WM-affectation, these probabilities of connection as well as the
ACS and ACD measures decrease considerably.

Finally, the performance of our model in comparison with SLT
and aFM methods was studied in the case of fiber crossing of three
orthogonal tracts, as shown in Fig. 9. Starting and ending ROIs
were defined as planes of 5×5 voxels (i.e. each ROI containing 25
voxels) at the two ends of the fiber tract being analyzed. Most of
the fiber paths generated from ROI1 using SLT method terminate
in the crossing fiber region or go to the perpendicular tracts (Fig.

http://www.fil.ion.ucl.ac.uk/spm/ext/#IBASPM


Fig. 7. Resulting anatomical connections between different regions of interest (ROIs) defined for straight crossing, curve crossing and Feuille trajectory. Each
defined ROI consists of seven contiguous voxels defining a perpendicular line to the corresponding fiber tract. Left column (Figs. 7a, c and e): reconstructed
connection routes (most probable paths) between ROI1 and the other defined ROIs, with SNR level of 15. Right column (Figs. 7b, d and f): corresponding
maximum voxel–voxel connectivity values between the image volume voxels and the ROI1 voxels. The color code represents the index of connectivity. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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9a). In contrast, both aFM and our graph-based tractography
method reconstructed tracts between ROI1 and ROI2 (Figs. 9b and
c, respectively). However, some fiber paths found by aFM failed to
follow the correct fiber tract (e.g. some of them strayed from the
fiber tract being analyzed at the level of the crossing region, going
to the other perpendicular tracts and doing a U-turn before coming
back to the main fiber to eventually reach the ending ROI).

Complementarily, Table 2 presents the obtained ACS, ACD and
ACP measures using aFM and the proposed approach. Notice that
although the zone–zone connectivity measures were not defined in
the aFM, we used the voxel–voxel connectivity provided by this
method to evaluate Eqs. (15), (16) and (17). The resulting CZone

ACP

(ROI1, ROI2) using aFM is lower than that provided by our
approach. Similarly, CZone

ACS (ROI1, ROI2) and CZone
ACD (ROI1, ROI2)

measures for the aFM method are more distant from their ideal
values (50 for the ACS, and 1 for the ACD measure).

It is interesting to note that in this experiment, the fiber paths
obtained by our method look rougher or noisier (i.e. changing
directions from voxel to voxel) inside the crossing region (Fig. 9c).
This effect is explained by the fact that in this region the diffusion
tensor is nearly spherical, and any fiber tracking method relying on
estimating an ODF will be affected by the goodness of this
estimation. In this work, the ODF is estimated from the Diffusion
tensor model (Appendix B). This is a very simple method which is
usually not able to describe complex fiber configurations, as is the
case in crossing regions. In the Summary and discussions section
the advantages of using more advanced models to infer the ODF
will be illustrated.

Human data

In order to explore the performance of the proposed method in
real data, we tried to replicate three well known brain anatomical
connections. First, anatomical connections between voxels of the
occipital pole surfaces (OCCs) and voxels belonging to the white
matter and to the gray matter regions surfaces (WM-GMs) were
estimated. The reconstructed connection routes (most probable
paths) between left and right OCCs are shown in Fig. 10a. Figs. 10b
and c show axial maps of the node–node connectivity values at the
level of the splenium of the corpus callosum and the lateral
geniculate nucleus, respectively. In these maps, each voxel was
assigned the maximum of all possible connectivity values between it
and the voxels of both OCC areas. Fig. 10a illustrates how the
connection routes pass correctly through the splenium of the corpus



Fig. 8. Anatomical connections for the branching configuration before and after a hypothetical loss of the white matter integrity. (a) Three different ROIs were
defined: ROI1 consists of two contiguous voxels at the left end of the fiber tract, ROI2 consists of four contiguous voxels at the upper right end of the tract, and
ROI3 is conformed by a single voxel located at the bottom right end of the tract. Reconstructed connection routes (most probable paths) between ROI1–ROI2
and ROI1–ROI3 are also represented. (b) To simulate a hypothetical loss of the white matter integrity, the values of two voxels in the binary mask (Pmat) were set
to zero (each voxel located symmetrically at the upper right tract or at the bottom right tract). (c) Obtained maximum voxel–voxel connectivity values between
the image volume voxels and the ROI1 voxels before the hypothetical loss of the white matter integrity. The color code represents the index of connectivity. (d)
Similar to (c), but after the hypothetical loss of the white matter integrity. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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callosum and Figs. 10b and c confirm the expected high connectivity
values for this region and the optic radiation, respectively. These
results are in accordance with existing anatomical knowledge
(Gómez-Padrón et al., 1985; Witelson, 1989; Standring, 2004).

The anatomical connections between voxels of an axial seed
plane (ASP) placed in the corticospinal tract at the level of the pons
(which is considered as a region) and voxels belonging to the
WM-GMs were also estimated. Fig. 10d shows the reconstructed
routes connecting the ASP and the left and right postcentrals gyrus,
passing through the internal capsule. Moreover, Figs. 10e and f
illustrate how regions of highest connectivity belong to the internal
capsule, the corona radiata and the motor cortex (Gómez-Padrón et
al., 1985; Standring, 2004).
Table 1
Results for branching configuration using the proposed connectivity graph
model

SNR CZone
ACS

(ROI1,
ROI2)

CZone
ACS

(ROI1,
ROI3)

CZone
ACD

(ROI1,
ROI2)

CZone
ACD

(ROI1,
ROI3)

CZone
ACP

(ROI1,
ROI2)

CZone
ACP

(ROI1,
ROI3)

Connectivity measures in branching configuration
7 5.56 2.60 0.92 0.87 0.99 1
15 5.57 2.58 0.92 0.86 0.99 0.99
31 5.58 2.59 0.93 0.86 1 1

Connectivity measures after affecting the white matter mask
7 3.98 1.58 0.66 0.52 0.98 0.59
15 3.96 1.57 0.66 0.52 0.99 0.59
31 3.96 1.57 0.66 0.53 0.99 0.60
In a similar way, anatomical connections between voxels of the
middle frontal gyrus (MFGs) and the WM-GMs voxels were
estimated (see Figs. 10g–i). We tried to obtain the fibers trajectories
first between the thalamus and the MFGs, and finally between the
left and right MFGs. In both cases, the main difficulty lies in the fact
that the connecting fibers should pass through the crossing of three
major bundles (i.e. intersection of the superior longitudinal
fasciculus, the corona radiata and the corpus callosum). Note that
the obtained routes connecting the thalamus and the MFGs (Fig.
10g) pass through the internal capsule and the corona radiata in
accordance with previous anatomical studies (Gómez-Padrón et al.,
1985; Standring, 2004). Also, those connection routes between the
left and right MFGs (Fig. 10g) pass specifically through the genu
and the rostral body of the corpus callosum and Figs. 10h and i
confirm the expected high connectivity values for these regions,
agreeing with Witelson's corpus callosum subdivision (Witelson,
1989).

Fig. 11 shows the mean ACS, ACD and ACP maps between 71
brain gray matter regions for five healthy subjects. For each subject,
ACS, ACD and ACP measures were computed after eliminating not
significant connectivity values between the WM-GMs voxels and
the set of defined gray matter structures. Significant values were
found by a z-test (H0: z≤0) with a 0.05 significance level. In each
map, the element Ci,j is the mean connectivity value between
regions i and j. Note that as we defined non-directed ACS, ACD
and ACP measures, the resulting maps are symmetrical. Also, it can
be spotted 2 black lines (4 with the symmetry) in all maps. These
correspond with the left and right subthalamic nucleus, which were
not correctly defined by the automatic parcellation method due to
their very small sizes.



Table 2
Results for orthogonal crossing of three fiber tracts using aFM and the
proposed connectivity graph model

Connectivity measures in orthogonal crossing using aFM and the
connectivity graph model

SNR aFM Graph model

CZone
ACS CZone

ACD CZone
ACP CZone

ACS CZone
ACD CZone

ACP
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According to the mean ACS map (Fig. 11a), the precentral
gyrus left and the postcentral gyrus left are the most connected
regions (i.e. they present the maximum ACS value, 387.16±
97.87). These regions play an important role in a wide variety of
the brain functions (e.g. motor and somatosensory functions). In
general, frontal and temporal structures are the most connected
structures. On the other hand, the most densely connected regions
are the caudate nucleus right and the thalamus right (connecting
(ROI1,
ROI2)

(ROI1,
ROI2)

(ROI1,
ROI2)

(ROI1,
ROI2)

(ROI1,
ROI2)

(ROI1,
ROI2)

7 23.53 0.47 0.50 36.41 0.72 0.90
15 23.80 0.48 0.50 37.78 0.76 0.91
31 24.63 0.49 0.51 42.73 0.85 0.98

Fig. 9. Tracking results for the fiber crossing of three orthogonal tracts with
SNR level of 15. ROI1 and ROI2 were defined as planes of 5×5 voxels at
the two ends of the fiber tract being analyzed. (a) All paths generated from
ROI1 using the SLT method. (b) Obtained connection routes between ROI1
and ROI2 using the aFM method. (c) Obtained connection routes between
ROI1 and ROI2 using the proposed methodology.
around the 10±3% of their surfaces). It is known that the caudate
nucleus is involved in the control of voluntary movement and in
learning and memory systems. Taking into account the mean ACP
map (Fig. 11c), the average connection density (i.e. the number of
all non-zero connections divided by the maximum possible number
of connections) was 0.7. This means that about the 70% of all
possible connections between any two of the defined brain
structures have a non-zero probability.

In order to evaluate (dis)similarity between the different
subjects, correlation coefficients between their corresponding
ACS, ACD and ACP maps were estimated (see Table 3). Results
show significant correlations in all cases (the maximum p value
obtained was in the order of 10−209), supporting the hypothesis that
healthy subjects present similar ACS, ACD and ACP patterns for
the gray matter parcellation used in this study.

Summary and discussions

In this work, we developed a diffusion imaging methodology
capable to characterize anatomical connections between different
brain gray matter structures. It consists of three basic steps: 1,
definition of a Brain Graph model in which each voxel is considered
as a node of a non-directed weighted graph; 2, the use of an iterative
algorithm based on analysis of the voxels neighborhood to find the
route of maximum probability between two nodes and the
subsequent definition of the anatomical connectivity measure
between them; 3, the definition of three anatomical connectivity
measures between different gray matter regions, which are
individually considered as clusters of nodes in the graph.

In step 1, the probabilistic tissue segmentation of the anatomical
MR image and the intravoxel white matter orientational distribu-
tion function (ODF), obtained from DW-MRI, are combined to
estimate the probability of nervous fibers connection between two
contiguous nodes (voxels), which is associated to the weight of the
arc connecting these nodes.

Generally, in the diffusion tracking framework, the fractional
anisotropy (FA) map is used to construct a binary mask which is
employed to constraint the fiber trajectories space (Conturo et al.,
1999; Mori and van Zijl, 2002; Staempfli et al., 2006). Assuming
that nervous fibers are present only in those regions with high
anisotropy, this mask is defined by an empirical threshold on the FA
map, which implies that regions where two or more fibers cross
each other will be ignored. To our knowledge, this work introduces
for the first time, the use of probabilistic brain tissue segmentations
of the anatomical MR images as a priori information to find
anatomically plausible connection routes between any two voxels.



Fig. 10. (a) Obtained anatomical connection routes between the left and right occipital poles. Both thalami are represented as anatomical references. (b) Axial
map at the level of the splenium of the corpus callosum representing maximum voxel–voxel connectivity values between the WM-GMs voxels and the OCCs
voxels. (c) Axial map at the level of the lateral geniculate nucleus representing maximum voxel–voxel connectivity values between the WM-GMs voxels and the
OCCs voxels. (d) Reconstructed connection routes between the ASP and the left and right postcentral gyrus. (e) Axial map representing maximum voxel–voxel
connectivity values between the WM-GMs voxels and the voxels of the ASP. (f) Coronal map representing maximum voxel–voxel connectivity values between
the WM-GMs and the ASP voxels. (g) Obtained connection routes among the left and right MFGs, and between each MFGs and the ipsilateral thalamus. (h)
Coronal map representing maximum voxel–voxel connectivity values between the WM-GMs voxels and the MFGs voxels. (i) Inter-hemispheric plane
representing maximum voxel–voxel connectivity values between the WM-GMs voxels and the MFGs voxels. In (b), (c), (e), (f), (h) and (i) the color code
represents the index of connectivity. Each connectivity map was overlaid on the corresponding T1-weighted image. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Additionally, we allow for tuning the relative importance between
the probabilistic gray and white matter segmentations through the α
parameter (see Eq. (3)). For α≥1, the segmentation of white matter
will have equal or bigger weight than the gray matter segmentation,
which agrees with the fact that nervous fibers are mostly in the
white matter. However, α should not be considerably greater than
one (for example: α=10), because voxel–voxel connections around
gray matter can be rejected. Thus, although in this study we chose
α=1, the appropriate selection of this parameter requires detailed
future analysis.

On the other hand, the weight of the arc connecting two
neighboring nodes is defined by taking into account the fibers
coherence along its direction. The probability that a fiber is present
around a particular arc is evaluated by computing the integral of
the ODF in a solid angle along its direction (see Fig. 3), which
contributes to reduce discretization errors at the same time that
complex structural fiber distributions can be considered. However,
the ODF is just one of several measures that implicitly reflect fiber
coherence. In this sense, the graph-based approach has the
advantage that other functions can be used for this purpose, such
as those characterizing fiber distribution with various maxima of
orientation (Jansons and Alexander, 2003; Tuch, 2004; Alexander,
2005) or even the ellipsoids given by the diffusion tensors (Basser
et al., 1994).

In order to find the anatomical connection route between two
nodes in the defined Brain Graph, we explored the set of all



Table 3
Correlations between the ACS, ACD and ACP maps of the 5 subjects

Subject 1 2 3 4 5

ACS correlation
1 – 0.71 0.76 0.78 0.85
2 – 0.69 0.72 0.64
3 – 0.79 0.74
4 – 0.79
5 –

ACD correlation
1 – 0.64 0.76 0.71 0.82
2 – 0.61 0.61 0.56
3 – 0.73 0.73
4 – 0.69
5 –

ACP correlation
1 – 0.64 0.64 0.59 0.69
2 – 0.68 0.66 0.60
3 – 0.64 0.63
4 – 0.60
5 –

For each connectivity measure, the elements above the main diagonal are the
correlation coefficients.
All the correlations are significant; the maximum p value obtained was in the
order of 10−209.

Fig. 11. Mean connectivity results for 71 gray matter regions defined on the
brain of five healthy subjects: (a) ACS, (b) ACD and (c) ACP. In each map,
the element Ci,j is the mean connectivity across subjects between regions i
and j. The color code represents the index of connectivity.
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possible discrete paths to select the route which optimize certain
function designed according to physiological criteria. A similar
example of this type of procedure are the Fast Marching (FM)
tractography techniques (Parker et al., 2002; Staempfli et al.,
2006), in which the route connecting two voxels should minimize
the “time” necessary to arrive from one voxel to the other. In our
case, the fiber tractography is expressed in terms of the most
probable path in the defined Brain Graph. Figs. 7–9 illustrate the
performance of the proposed tractography method in the artificial
DW-MRI data. The results show that the methodology we have
introduced here is able to reconstruct correctly complex fiber
configurations such as straight crossing, curve crossing, Feuille
trajectory, branching tract and orthogonal crossing of three tracts.
Also, the obtained connection routes between the left and right
OCCs (Fig. 10a), the defined ASP and both postcentral gyrus (Fig.
10d), the thalamus and left and right MFGs (Fig. 10g) were
presented. These results agree with existing anatomical knowledge
(Gómez-Padrón et al., 1985; Witelson, 1989; Standring, 2004).

Quantification of the anatomical connectivity between two
voxels can be defined according to the parameters of the connection
route among them and also taking into account the a priori
information about the connectivity between these voxels, which
could come from previous anatomical and functional studies
based on histological tracing methods or neuroimaging techniques
(e.g. fMRI, EEG/MEG tomography, PET, etc.). This allows the
integration between different anatomical and functional connec-
tivity measures. In this work, similar to Parker et al. (2002) and
Staempfli et al. (2006), an anatomical connectivity measure is
defined as the lowest weight of the arcs set belonging to the most
probable path. However, we consider that other node–node
(voxel–voxel) connectivity measures should be explored.

To characterize anatomical connections between K brain gray
matter structures, the previous Brain Graph was redefined as a
K+1 partite graph by partitioning the initial nodes set in K non-
overlapped gray matter subsets and one subset clustering the
remaining nodes. Based on the latter, three connectivity measures
were defined: Anatomical Connection Strength (ACS), Anatomical
Connection Density (ACD) and Anatomical Connection Prob-
ability (ACP). ACS provides an estimation of the potential
information flow between any pair of regions. It is considered
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proportional to the amount of nervous fibers shared by these
regions. To estimate it we considered that, similar as in a system of
tubes in which the liquids flow in one extreme of a specific tube
depends on its cross section area and on the rate of liquids, the
potential nervous information flow can be reflected by the cross
section area of the fiber connector volume on the surfaces of the
two regions. Here, the ACS is estimated by counting the
“effective” number of nodes on the surfaces of the zones involved
in the connection, where each node is counted according to a
function which represents its anatomical connectivity value with
the surface of the second zone (this function ranges between 0, no
connected, and 1, completely connected). When the zones of
interest present a high number of superficial nodes, the proposed
ACS estimation has the inconvenient that, even if the superficial
nodes of the zones are not well connected, the accumulation of a
great number of small node–node connectivity values can cause a
high ACS. To avoid this, it is reasonable to eliminate those node–
node connections with values below a specified threshold before
computing the ACS, which also contributes to eliminate the
nuisance connections. Although in this work we used a z-test in
order to eliminate non-significance connectivity values between
the WM-GMs voxels and the set of defined gray matter structures,
the selection of the threshold could be carried out using more
advanced local and global thresholding models, such as local false
discovery rate technique (Efron, 2004, 2005) or image thresholding
based on the EM algorithm (Yakoub et al., 2006). This will be the
subject of future work.

On the other hand, ACD is a measure of the fraction of the
connected superficial nodes with respect to the total number of
superficial nodes of both areas. It permits, for example, to know if a
pair of zones has more or less density of connection than other pair
of zones with different or equal number of superficial nodes. Two
regions with a high ACS value (compared with the ACS between
others pairs of regions) not necessarily have to present a high ACD
value. This situation could take place when two regions of interest
contain a high number of superficial nodes. Similarly, a pair of
zones with a low ACS value can present a high ACD value, which
occurs specifically when the zones contain a small number of
superficial nodes (each node having an anatomical connectivity
value close to 1 with the surface of the other zone).

While ACS and ACD quantify the strength and density of the
possible connection respectively, ACP measures the maximum
probability of two regions to be connected at least by a single
connection. It allows to infer if any two gray matter regions can be
functionally related independently of the strength and density of
the possible connection. Additionally, other zone–zone connectiv-
ity measures can be defined and some of them could be directly
formulated as the combination of the three proposed measures.

Fig. 11 show the mean maps of ACS, ACD and ACP obtained
between 71 gray matter structures for five healthy subjects.
Significant correlations among the connectivity matrixes of the
different subjects were found (Table 3), which could support the
hypothesis that healthy subjects present similar ACS, ACD and
ACP patterns for the used gray matter parcellation. Before
presenting the aforementioned results, the anatomical connections
obtained for the branching configuration before and after a
hypothetical loss of the white matter integrity were presented
(Fig. 8 and Table 1), illustrating how the ACS, ACD and ACP
measures reflect the white matter affectation. In a similar way,
more detailed comparisons between normal and pathological ACS,
ACD and ACP maps (or its combinations) could be a potential
procedure to detect and diagnose pathologies causing functional
cognitive deficiencies related to white matter injury, such as:
Alzheimer, Schizophrenia and Dyslexia. Compared to connectivity
maps of normal subjects, abnormal ones can reveal certain damage
in the anatomical interconnectivity between multiple functional
cognitive brain areas, allowing to find those regions that are not
wired properly. Other possible application of the aforementioned
connectivity maps is to use them as a priori or complementary
information in brain functional connectivity studies (see for
example Sotero et al., 2007).

However, the lack of information about the direction of nervous
fibers in DW-MRI data hinders the possibility of distinguishing
between efferent and afferent projections. Thus, in the defined non-
directed weighted graph, the direction of the arcs (distinction
between initial and terminal nodes) is irrelevant and making the
measures ACS, ACD and ACP to be bidirectional. This constitutes
an inherent important limitation of DW-MRI techniques. Never-
theless, in a previous work (Young, 1993) a connectivity matrix of
the primate cerebral cortex was reported where approximately only
the 15% of the total possible connections between 73 brain areas
were not reciprocals.

An important element in the Brain Graph model is the voxel
size of the MR images (1/resolution). Reduction of the voxel size
(which can be achieved directly in the data acquisition) implies a
more accurate description of the brain structure, i.e. a better
characterization of the intravoxel anisotropy as well as a more
reliable tissue segmentation. However, the decrease of the voxel
size leads to a worse SNR and implies an increase in the
computational cost of the methodology.

Other important element is the angular resolution of the
diffusion weighted images. In this work, we have achieved
competitive results with the use of low angular resolution data,
but certainly a better performance of the methodology can be
obtained using high angular resolution techniques, for example Q-
ball Imaging (Tuch, 2004) and diffusion spectrum MRI (Wedeen et
al., 2005). A better estimation of the ODF implies a precise
characterization of the intravoxel white matter disposition and thus
an accurate evaluation of the fibers coherence along arcs direction,
which subsequently implies a more realistic characterization of the
brain structure. In order to illustrate this, in Fig. 12 a comparison of
the fiber crossing of three orthogonal tracts using the introduced
graph-based tractography with ODF maps estimated from (a) the
Diffusion tensor model (same results that in Fig. 9c) and (b) the Q-
ball Imaging technique (Tuch, 2004) is shown. Close-ups of the
fiber crossing region are shown, illustrating that the calculated
routes using the Diffusion tensor model (Fig. 12a) are considerably
rougher or noisier than those routes obtained using the Q-ball
Imaging technique (Fig. 12b). This supports the idea that high
angular resolution-based techniques allow to get better results.

The Graph Theory constitutes an ideal framework for modeling
diverse system situations. Given the wide use of the graph
framework in several areas of physics and mathematics, multiple
problems and practical applications have been undergone. In this
study, this framework is applied for the first time to the fiber tracking
problem and to the subsequent quantification of the brain anatomical
connections from DW-MRI data. However, open problems remain
related to the recognition of false fiber trajectories and to the cor-
responding elimination of nuisance connections. Statistical models, in
which a relative high number of subjects should be considered, can be
useful to investigate the variability of the connectivity maps in order to
eliminate non-significant and superfluous connections. Also, as was



Fig. 12. Comparison of the fiber crossing of three orthogonal tracts using the graph-based tractography method with SNR level of 15 and ODF maps estimated
according to: (a) Diffusion tensor model, (b) Q-ball Imaging technique. Close-ups of the fiber crossing region are shown.
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mentioned in Section 2.4, the probability that a node belongs to a
given gray matter structure can be specified employing Maximum
Probability Segmentation Maps or even using Spatial Probabilistic
Anatomical Maps (Mazziotta et al., 1995). In the future, more
advanced graph models should be able to employ both this
probability and the uncertainty in the estimation of the fiber
orientation distribution function. This, in turn, could be used to
estimate the error associated to arc weights, node–node and zone–
zone connectivity measures. Additionally, future studies in animals
should be addressed to further testing of the performance of the
proposed methodology.
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Appendix A. Algorithm to solve the most probable path
problem

Given a Brain Graph Gbrain= [N,A], let us define some quan-
tities before setting up the algorithm:

|N|: Cardinality of the set N, i.e. the number of elements
belonging to set N.
N− s: Set of nodes that belong to Gbrain except node ‘s’,
N�s ¼ N=frYsg.
MðrYvÞ: Map of probabilities of the path between node ‘s’ and all
nodes rYvaN�s,MðrYvÞ ¼ P qðrYs;rYvÞ½ � and MðrYsÞ ¼ 1.
Ni

neig: Nearest neighborhood of the i-th node.

This algorithm proceeds in |N|−1 iterations as follows:

a) Set initially:

a.1) S̃=N− s

a.2)
MðrYiÞ ¼

1; rYi ¼ rYs;
wðasiÞ; rYia N neig

i
0; otherwise:

8<
:

a.3) q̃ðrYs;rYiÞ ¼ asi; 8rYiaN neig
s

b) Find rYjaS̃ such that MðrYjÞ ¼ max
8rYiaS̃

MðrYiÞ
b.1) Set a new S̃pS̃=frYjg
b.2) If S̃ =Ø, then Stop; else continue

c) For all rYmaN neig
j and rYmaS̃, set

c.1) qðrYs; rYmÞ ¼ q̃ rYs; rYj

� � [ ajm
� �

;

c.2) If P q rYs; rYmð Þ½ � > MðrYmÞ then
q̃ðrYs; rYmÞ ¼ qðrYs; rYmÞ; MðrYmÞ ¼ P½q̃ðrYs; rYmÞ�

c.3) go to b.
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Finally, the map MðrYpÞ for rYpaN�s represents the final
probability of the path of maximum reliability according to Eq.
(8) between nodes rYs and rYp denoted by q̃ðrYs; rYpÞ.

Appendix B. White matter orientational distribution function

The intravoxel white matter orientational distribution function
(ODF) Ψ ( ̂u) is defined as the radial projection of the probability
density function (PDF) PðRYÞ (Wedeen et al., 2005):

wð ̂uÞ ¼
Zþl

0

R2Pð ̂uRÞdR; ðB1Þ

being û a unitary vector and R
Y ¼ ̂uR the relative spin

displacement.
Considering the PDF for anisotropic Gaussian diffusion:

P R
Y

 �

¼ ð4ptÞ�3=2ðjDjÞ�1=2e
�R

Y T
D�1R

Y

4t ; ðB2Þ

Then, substituting in Eq. (B1) and using the identity:Zþl

0

xmeax
2
dx ¼

C ðmþ1Þ
2


 �
2a

mþ1
2

; ðB3Þ

where Γ is the Gamma function, we can obtain the ODF as:

w ̂uð Þ ¼ 1
C

̂uTD�1 ̂u
� ��3

2 ðB4Þ

Here, C is a normalization constant which ensures that the ODF
is properly normalized to unit mass.
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