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Our goal is to study the human brain anatomical network. For this, the
anatomical connection probabilities (ACP) between 90 cortical and
subcortical brain gray matter areas are estimated from diffusion-
weighted Magnetic Resonance Imaging (DW-MRI) techniques. The
ACP between any two areas gives the probability that those areas are
connected at least by a single nervous fiber. Then, the brain is modeled
as a non-directed weighted graph with continuous arc weights given by
the ACP matrix. Based on this approach, complex networks properties
such as small-world attributes, efficiency, degree distribution, vulner-
ability, betweenness centrality and motifs composition are studied. The
analysis was carried out for 20 right-handed healthy subjects (mean
age: 31.10, S.D.: 7.43). According to the results, all networks have
small-world and broad-scale characteristics. Additionally, human
brain anatomical networks present bigger local efficiency and smaller
global efficiency than the corresponding random networks. In a
vulnerability and betweenness centrality analysis, the most indispen-
sable and critical anatomical areas were identified: putamens,
precuneus, insulas, superior parietals and superior frontals. Interest-
ingly, some areas have a negative vulnerability (e.g. superior temporal
poles, pallidums, supramarginals and hechls), which suggest that even
at the cost of losing in global anatomical efficiency, these structures were
maintained through the evolutionary processes due to their important
functions. Finally, symmetrical characteristic building blocks (motifs)
of size 3 and 4 were calculated, obtaining that motifs of size 4 are the
expanded version of motif of size 3. These results are in agreement with
previous anatomical studies in the cat and macaque cerebral cortex.
© 2008 Published by Elsevier Inc.

Introduction

The brain is one of the most challenging systems found in nature.
It can be viewed as a complex network consisting of highly
interconnected processing regions. Its response to any external
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stimulus relies on the cooperation among these specialized centers,
which can be classified according to their anatomical and functional
properties (Brodmann, 1909; Mazziotta et al., 1995; Toga et al.,
2006; Mountcastle, 2007). Thus, the study of their anatomical and
functional connectivity constitutes an indispensable step towards the
understanding of the brain specialization and integration (Sporns et
al., 2005).

Previous works in mammalian species (i.e. cat and macaque
monkey) have shown that cortical anatomical connection matrices,
obtained post-mortem, exhibit “small-world” attributes (Sporns
and Zwi, 2004; Hilgetag and Kaiser, 2004). That is, anatomical
brain connection patterns are characterized by a high clustering
index and a short average distance between any two regions.
Small-world topology is generally associated with global and local
parallel information processing, sparse connectivity between nodes
and low wiring costs (Bassett and Bullmore, 2006). Using this
same connectivity datasets, structural and functional motifs
composition (characteristic network building blocks) were studied
(Sporns and Kotter, 2004). The results supported the hypothesis
that while brain networks maximize both the number and the
diversity of functional motifs, the repertoire of structural motifs is
relatively small.

Functional human brain networks derived from functional
Magnetic Resonance Imaging (fMRI), Electroencephalogram
(EEG) and Magnetoencephalographic (MEG) data also exhibit
small-world properties (Stam, 2004; Eguiluz et al., 2005; Salvador
et al., 2005; Achard et al., 2006; Bassett et al., 2006). However,
characteristics of the human brain anatomical network have been
poorly investigated. This is due to difficulties in defining the basic
structural elements of the human brain in terms of nodes and
connections (Sporns et al., 2005) and also because the common
invasive tracer methods cannot be applied. Recent steps in that
direction were given by He et al. (2007), which investigated
anatomical connections patterns in the human cerebral cortex in
vivo using cortical thickness measurements from magnetic
resonance images. For this, the cerebral cortex was segmented
into 54 different areas for 124 normal brains, and any two areas
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were considered anatomically connected if they had statistically
significant correlations in cortical thickness. This is based on
studies suggesting that interregional statistical associations in
cortical thickness provide important connectivity information
(Worsley et al., 2005; Lerch et al., 2006). Then, a threshold value
was applied to interregional correlation matrix in order to construct
a binary undirected graph and estimate its properties, principally
small-world properties and the connectivity degree distribution.
Their results supported the hypothesis that human brain anatomical
networks present small-world attributes and follow a degree
distribution characterized by an exponentially truncated power-law.
However, as their approach was limited to cortical networks,
important subcortical structures such as the thalamus or the amygdales,
which keep vital connections with cortical areas, were not taken into
account.

On the other hand, the development of diffusion-weighted
Magnetic Resonance Imaging (DW-MRI) techniques in the last
decade makes possible the noninvasive study of the anatomical
circuitry of the living human brain (Mori et al., 1999; Conturo et
al., 1999; Tuch, 2002; Parker et al., 2002; Koch et al., 2002;
Behrens et al., 2003; Hagmann et al., 2006; Iturria-Medina et al.,
2007). In this context, Hagmann et al. (2006) reported for the first
time small-world attributes in networks of small human cortical
areas estimated from DW-MRI techniques. In that study, nodes of
the analyzed network corresponded to small cubic regions of
interest (ROI) covering the gray matter tissue, while arc weights
were assigned according to the estimated fiber densities between
nodes, which had been previously computed using an in vivo
probabilistic nervous fiber tracking procedure (Wedeen et al.,
2005). By applying a threshold to the created graph, an
unweighted version was constructed and its small-world and
hierarchical properties were analyzed. Their results show similar
small-world topologies to those obtained for the rat and macaque
monkey brain networks, which were created using post-mortem
tracing techniques.

In the present paper we continue the characterization of the
human brain anatomical connections by extending previous works
in several ways. First, instead of an unweighted graph as in
Hagmann et al. (2006) and He et al. (2007), a weighted version will
be used for modeling the brain anatomical network. In this
approach, the weights are obtained from the anatomical connections
probability (ACP) matrix which gives the probability that any two
areas are connected at least by a single nervous fiber. For obtaining
the ACP matrix, anatomical connections patterns between 90
different anatomical gray matter regions will be estimated using
DW-MRI techniques and Graph Theory (Iturria-Medina et al.,
2007). These regions include both cortical and subcortical structures
as defined by Tzourio-Mazoyer et al. (2002) according to functional
and anatomical criteria. Finally, in addition to previous small-world
and degree distribution analysis, other important network proper-
ties, such as efficiency, vulnerability, betweenness centrality and
motif composition will be investigated.

The remainder of the paper is organized as follows. In the
Materials and methods section the DW-MRI methodology used for
estimating brain anatomical connections is briefly described, and it
is shown that the obtained anatomical network can be viewed as a
weighted non-directed graph. After that, concepts like small-world
and network efficiency, degree distribution, vulnerability, between-
ness centrality and motifs composition are briefly exposed. The
experimental data and its preprocessing are also described. In the
Results section significant findings are presented. Finally, the last
section summarizes and discusses the principal results, and
proposes some open problems to be considered in future studies.

Materials and methods

Mapping zone-zone brain anatomical connections using DW-MRI

DW-MRI techniques have being widely used to estimate the
nervous fiber pathways connecting brain regions of interest (Mori
et al., 1999; Conturo et al., 1999; Tuch, 2002; Parker et al., 2002;
Koch et al., 2002; Behrens et al., 2003; Hagmann et al., 2006;
Iturria-Medina et al., 2007). Recently, a novel DW-MRI and Graph
Theory methodology (Iturria-Medina et al., 2007) was introduced
with the principal purpose of summarizing anatomical connections
patterns between brain gray matter areas. The proposed procedure
consists of three major steps:

1. The cerebral volume is represented as a non-directed weighted
graph Gbrain,0= [N0, A0, W0], where N0 is the set of voxels
(nodes) having a non-zero probability of belonging to some
cerebral tissue, A0 is the set of white matter links (arcs) between
contiguous voxels in N0, and W0 is a set of real numbers
representing arcs weights. The weight of an arc is chosen so that
it represents the probability that contiguous linked nodes are
really connected by nervous fibers. It is defined by taken into
account both the probability that linked nodes belong to gray/
white matter (evaluated according to the probabilistic tissues
segmentation of the corresponding anatomic T1-weighted
image) and the probability of nervous fibers to be oriented
around the direction of the arc (evaluated using the intravoxel
white matter Orientational Distribution Function [ODF] esti-
mated via DW-MRI techniques) (see Eq. (A1)). This ensures
that only those pairs of contiguous nodes with high probability
of belonging to gray/white matter and high probability of
sharing fibers will have high arc weights, which is equivalent to
have high probability of being connected. Also, since the DW-
MRI profile is symmetric (efferent and afferent projections can
not be distinguished) Gbrain,0 is modeled as a non-directed graph
(i.e. distinction between initial and terminal arc nodes is
irrelevant).

2. In this step, an iterative algorithm (see Appendix C) is employed
for finding the most probable trajectory (see Eq. ((A6)) between
any two nodes, which is assumed to be the hypothetical nervous
fiber pathway running between these points. Thus, quantifica-
tion of the anatomical connectivity between both points is
carried out according to the intrinsic information of this
estimated connection route. Specifically, the node-node anato-
mical connectivity measure (ranging between 0, not connected,
and 1, perfectly connected) is defined as the lowest weight of the
arcs set belonging to the most probable path (see Eq. (A7)). This
ensures that only those brain points with high arc weights
(probability of white matter connection) of all the arcs belonging
to their connection route will have a high connectivity value.

3. In order to characterize anatomical connections between n brain
gray matter structures, the previous graph Gbrain,0 is redefined as
a n+1 partite graph Gbrain by partitioning the initial nodes set N0

into n non-overlapped gray matter subsets and one subset
clustering the remaining nodes. In this context, the new weighted
non-directed brain graph Gbrain= [N, A,W] consist of a set N of n
nodes (gray matter regions), a set A of arcs (direct white matter
connections between gray matter regions) and a set W of arc
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weights (probability of connections between the gray matter
regions). Graphically, Gbrain is a discrete set of points (nodes)
representing anatomic regions and a set of lines without arrow
(arcs) representing connections between the regions. Based on
the latter, three connectivity measures were defined: Anatomical
Connection Strength (ACS), Anatomical Connection Density
(ACD) and Anatomical Connection Probability (ACP). The
interpretation of these measures is as follows. ACS provides an
estimation of the potential information flow between any pair
of regions, which is considered proportional to the amount of
nervous fibers shared by these regions. As an indicator of the
latter, we took the cross section area of the fiber connector
volume on the surfaces of the two regions. This is estimated by
counting the “effective” number of nodes on the surfaces of the
zones involved in the connection, where each node is counted
according to its maximum probability of being connected with
the nodes in the surface of the second zone (see Eq. (A8)). On
the other hand, ACD is a measure of the fraction of the
connected superficial nodes with respect to the total number of
superficial nodes of both areas (see Eq. (A10)). It allows, for
example, to know if a pair of zones has more or less
connection density than other pair of zones with different or
equal number of superficial nodes. Finally, ACP measures the
maximum probability of any two regions to be connected at
least by a single nervous fiber connection. It is estimated as the
maximum connectivity value between the superficial nodes of
both involved areas (see Eq. (A11)) and allows to infer if any
two gray matter regions can be functionally related indepen-
dently of the strength and density of their possible anatomical
connection.

In the present study, as our goal is to analyze a map of possible
brain anatomical connections implying potential functional inter-
change between gray matter areas (i.e. which areas are directly
connected or not), we employ the ACP measure for weighting
zone-zone connections in Gbrain. Further works might include ACS
and ACD measures in order to complement the description of the
brain anatomical network.

Graph analysis to characterize brain anatomical connections

A great number of natural systems can be represented by
complex networks. Graph Theory is usually considered the most
appropriate framework for the mathematical treatment of complex
networks. In general, a complex network can be represented as a
graph in which nodes correspond to the elements of the system and
arcs to the interactions between them (Boccaletti et al., 2006). In
our specific case, we want to study the weighted brain network
Gbrain= [N, A,W], which model the anatomical connections between
90 cortical and subcortical gray matter regions. Gbrain will be
characterized attending to six basic aspects: small-world, network
efficiency, degree distribution, vulnerability, betweenness centrality
and motifs composition.

Small-world and network efficiency

The concept of “small-world” is strongly related to the average
shortest path length (L) and clustering coefficient (C) concepts. Let
us explain these in detail: the average shortest path length (L) of a
given graph G=[N, A,W], is a measure of the typical separation
between two nodes i and j (8i, jaN), and it is defined as the mean
of geodesic lengths dij over all pairs of nodes (Watts and Strogatz,
1998; Watts, 1999; Boccaletti et al., 2006):

L ¼ 1
nðn� 1Þ

X
i;jaG

ipj

dij ð1Þ

In the unweighted network context (wij= [0,1]aℕ), the
geodesic length dij is defined as the number of arcs along the
shortest path connecting nodes i and j. In the case of weighted
networks (wijaℝ), the path with the minimum number of nodes is
not necessarily the optimal dij and in some cases it is necessary to
define a physical length associated to each arc (this should be a
function of the characteristics of the hypothetical link among any
nodes i and j). In this work, we follow the suggestion of Boccaletti
et al. (2006), and assume that the physical length of an arc
connecting nodes i and j is inversely proportional to the probability

of the analyzed connection, i.e. lij ¼ 1
wij

. That is, as the probability

of nervous fiber connection is lower the nodes are more distant.
Note that this assumption do not penalizes arc length according to
the real spatial separation between the position of the modeled gray
matter regions or according to the longitude of the connecting fiber
pathway. This is because the defined probability of nervous fiber
connection only depends on the “diffusion data coherence” and the
white/gray matter presence along the estimated connection routes,
and not on its longitude. Thus, long range connections (such as
those maintained by the optic radiation and the occipital–frontal
fascicule) can have arc length values similar to short range
connections, only depending of their corresponding connection
probabilities. The geodesic length dij is finally defined as the
smallest sum of the arc lengths throughout all the possible paths
from node i to node j. Note that for the particular case of
unweighted graphs, lij=1 for all arcs and the geodesic lengths dij
reduces to the minimum number of arcs traversed to get from i to j.

On the other hand, the clustering coefficient is a measure of the
inherent tendency to cluster nodes into strictly connected
neighborhoods (Watts and Strogatz, 1998). In a weighted graph,
the clustering around a node i can be calculated as the geometric
average of subgraph node weights (Onnela et al., 2005):

Ci ¼ 1
kiðki � 1Þ

X
j;kaG
j;kpi

w̃ijd w̃jkd w̃ki

� �1
3; ð2Þ

where ki is the number of arcs connecting node i (named degree of
the node i) and the weights are scaled by the largest weight in the

network, w̃ij ¼ wij

maxðwijÞ. The clustering coefficient for the whole

graph G is defined as the average of clustering around each node
(Watts and Strogatz, 1998):

C ¼ 1
n

X
iaG

Ci: ð3Þ

Formally, Watts and Strogatz (1998) defined small-world net-
works as those having small average shortest path length, like random

networks (ku
Lreal

Lrand
f1), and high clustering coefficient, much larger

than random networks (gu
Creal

Crand
H1). Additionally, the small-

worldness condition lies in satisfying that ru
g

k
N1 (Humphries et

al., 2006).
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The concept of small-world has been also expressed in terms of
the information flow (Latora and Marchiori, 2001). That is, small-
world networks are very efficient in terms of global and local
communication (they have high global and local efficiency Eglob

and Eloc, respectively). The Eglob of a graph G is defined as:

Eglob ¼ 1
nðn� 1Þ

X
i;jaG

ipj

1
dij

: ð4Þ

This measure reflects how efficiently information can be
exchanged over the network, considering a parallel system in
which each node sends information concurrently along the
network. On the other hand, the Eloc of G is defined as the
average efficiency of the local subgraphs:

Eloc ¼ 1
n

X
iaG

Eglob Gið Þ; ð5Þ

where Gi is the subgraph of the neighbors of i. This measure
reveals how much the system is fault tolerant, showing how
efficient the communication is among the first neighbors of i when
it is removed. That is, the efficiency formalization gives a clear
physical meaning to the concept of small-world, and allows a
precise quantitative analysis of weighted networks (Latora and
Marchiori, 2001).

In order to compare the efficiency of a given real network with
the efficiency of its equivalent random network (characterized by
the same number of nodes and arcs placed randomly), from now on
we will refer to the relative local efficiency (Eloc∗ ) and the relative
global efficiency (Eglob∗ ) measures (i.e. the ratio between the
local and global efficiencies of the real and random networks
respectively).
Degree distribution

Since not all nodes in a complex network have the same degree,
usually a degree distribution P(k) is defined. This gives the
probability that a randomly selected node has k arcs (Erdös and
Rényi, 1959). The degree distribution properties are commonly
employed to classify networks into different categories. Amaral et
al. (2000) presented evidences of the occurrence of three classes of
small-world networks attending to their degree distribution
properties: 1) scale-free networks, 2) broad-scale networks, and
3) single-scale networks.

Scale-free networks, for example the World-Wide Web (Albert
et al., 1999), are characterized by a degree distribution that decays
as a power law, i.e. P(k)~k−α, with exponents varying in the range
2bαb3. This power law indicates the preferential attachment of
the nodes in the network to some specific hub nodes.

Broad-scale networks are characterized by a degree distribu-
tion that has a power law regime followed by a sharp cutoff, i.e.
P(k)~kα−1f(k/kcrit). The function f(k/kcrit) has a sharp cut-off for
degrees kNkcrit, constraining the number of nodes that can be
connected to the hub nodes.

Finally, single-scale networks are characterized by a degree
distribution with a fast decaying tail, i.e. P(k)~ f(k/kcrit). Commonly
for single-scale and broad-scale regime the sharp cutoff functions
f(k/kcrit) are exponential or Gaussian (Amaral et al., 2000).

The information expressed by the degree distribution func-
tion is often presented by the cumulative degree distribution
PcðkÞ ¼
Pl

k V¼k Pðk VÞ, which is usually used to reduce the effects
of noise corresponding to small networks (Strogatz, 2001; He
et al., 2007).

Vulnerability

The vulnerability analysis of complex networks provides
valuable quantitative information about the possible damage
caused by the hypothetical failure of its elements. That is, this
type of analysis allows to identify which are the most critical or
indispensable structures for the appropriate operation of the
network, and in the specific case of brain networks, it could be
useful to evaluate the damage caused by illness known to affect
gray matter connections such as Alzheimer Disease (Pearson et
al., 1985; Morrison et al., 1986) and Schizophrenia (Mitelman
et al., 2007).

By associating the performance of a network with its global
efficiency, the vulnerability Vi of a node i can be defined as the
drop in network performance when node i and its connections are
removed (Newman and Park, 2003; Goldshtein et al., 2004; L.da F.
Costa et al., 2006):

Vi ¼
Eglob � Ei

glob

Eglob
; ð6Þ

where Eglob and Eglob
i are the global efficiency of the network with

and without node i.
Then, the vulnerability of the entire network G is defined as the

maximum vulnerability for all of its nodes (Latora and Marchiori,
2005; L.da F.Costa et al., 2006):

V ¼ max
i

Vi: ð7Þ

Betweenness centrality

Betweenness centrality is a widely used measure to identify the
most central nodes in a graph, which are associated to those nodes
that acts as bridges between the others nodes (Freeman, 1977;
Dall'Asta et al., 2006; Bassett et al., 2006; Honey et al., 2007). It is
defined as the fraction of shortest paths between pairs of nodes that
passes through a given node. Mathematically, for weighted
networks, if σkj

w is the total number of shortest paths from k to j
and σkj

w(i) is the number of these paths passing through node i, the
weighted betweenness centrality of node i is (Dall'Asta et al., 2006):

bwi ¼
X

k;jaG
kpj

rwkjðiÞ
rwkj

: ð8Þ

Motifs composition

Network motifs are subgraphs that appear more frequently in a
real network than could be statistically expected, and are associated
to the network evolution (Milos et al., 2002; Sporns and Kotter,
2004; Onnela et al., 2005). To detect those motifs that are likely to be
important, Milos et al. (2002) proposed to compare the analyzed real
network to suitably randomized networks and to select patterns
appearing in the real network at numbers significantly higher than
those in the randomized networks. Different motifs classes are
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generally distinguished according to the motif's size (M), represent-
ing the number of involved nodes, and the number and pattern of
interconnections.

In the case of weighted networks, Onnela et al. (2005) defined
the intensity (IM) of motif M as the geometric mean of its arc
weights, and the coherence (QM) of motif M as the ratio of the
geometric to the corresponding arithmetic mean. Based on these
measures, motif scores were defined as:

ZIM ¼ IM � hiM ið Þ
hi2M i � hiM i2
� �1

2

;

ZQM ¼ QM � hqM ið Þ
hq2M i � hqM i2
� �

1
2

;

ð9Þ

where ZIM and ZQM are the motif intensity and coherence score
respectively; iM and qM are the total intensity and coherence of
motif M in one realization of the random regime, respectively.
Experimental data

DW-MRI datasets corresponding to 20 right-handed healthy
subjects (mean age: 31.10, S.D.: 7.43) were acquired using a MRI
scanner Siemens Symphony 1.5 T (Erlangen, Germany) and a
single shot EPI sequence. Each dataset consists of 12 diffusion-
weighted images and a b=0 image, with the following parameters:
50 contiguous slices of 3 mm thickness; b=1200 s/mm2 for the
weighted images; FOV=256×256 mm2; acquisition matrix=
128×128; corresponding to an ‘in plane’ spatial resolution of
2×2 mm2; TE/TR=160 ms/7000 ms. The aforementioned
acquisition was repeated 5 times to improve signal to noise ratio
(SNR). In order to improve EPI quality, magnitude and phase
difference images of a T2 gradient echo field mapping sequence
were acquired with TE=7.71 ms and 12.47 ms. Also, for each
subject a 3D high resolution T1-weighted image (MPRAGE)
covering the whole brain was acquired with the following
parameters: 160 contiguous slices of 1 mm thickness in sagittal
orientation; in plane FOV=256×256 mm2, corresponding to an in
plane spatial resolution of 1×1 mm2; TE/TR=3.93 ms/3000 ms.

In order to remove remaining distortions an affine 3D mutual
normalized information-based registration method (Studholme et
al., 1998) was used. The DW-MRI images were corrected from
EPI distortions using the SPM FieldMap toolbox (Hutton et al.,
2002). The T1-weighted 3D anatomical image was registered to
the b=0 image using a normalized mutual information method
(Studholme et al., 1998). Both diffusion-weighted images and T1-
weighted images were interpolated and written with a spatial
resolution of 2×2×2 mm3. The registered interpolated T1-
weighted image was automatically segmented into 90 gray matter
structures (Tzourio-Mazoyer et al., 2002) using the IBASPM
toolbox (available at http://www.fil.ion.ucl.ac.uk/spm/ext/
#23IBASPM) (Alemán-Gómez et al., 2006). ODF maps were
estimated using the procedure described in Appendix B.

Additionally, a set of three brain anatomical connectivity
matrices were obtained from the Computational Cognitive
Neuroscience Laboratory, Indiana University Bloomington (http://
www.indiana.edu/~cortex/CCNL.html). These datasets correspond
to the cat cerebral cortex, the macaque monkey visual cortex and the
macaque monkey cerebral cortex, and consist of unweighted
matrices with number of nodes 95, 30 and 73, respectively.
In all cases, randomized counterpart versions of the original
networks were created using a rewiring algorithm (Maslov and
Sneppen, 2002). This algorithm preserves the degree of each
individual node, but connection weights are randomized until
weight correlations with the original network are lost.

Results

Fiber tracking and zone–zone connectivity

Using the DW-MRI methodology described above, anatomical
connections between the defined 90 brain gray matter structures
were estimated for the 20 healthy subjects. Fig. 1 presents the
obtained mean intersubject ACP matrix. The element Cij is the
connectivity value between regions i and j. As previously
mentioned, this map is symmetric. Self connections are excluded,
which implies a diagonal black line in the matrix. Also, it should
be kept in mind that for each subject the anatomical reconstruction
consisted of the whole brain with the two hemispheres (i.e.
including callosal connections). Note for example the high
connectivity values between the left and right superior frontal
gyrus, or between the left and right superior occipital poles, which
is in accordance with existing anatomical knowledge (Gómez-
Padrón et al., 1985; Witelson, 1989; Standring, 2004).

In order to evaluate intersubject dis(similarity), correlations
coefficients between their corresponding ACP matrices were
calculated. Significant correlations coefficients were obtained
(ranging between 0.65 and 0.88) with corresponding p values in
the order of 10−220.

Small-world and network efficiency analysis

First, the relative clustering coefficient γ, the relative average
shortest path length λ and the small-worldness parameter σ were
calculated for each subject. The results (first three columns of
Table 1) confirm the expected small-world attributes of the studied
brain anatomical networks according to the Watts-Strogatz (1998)
and Humphries et al. (2006) conditions (i.e. λ~1, γH1 and σN1).
The obtained mean parameters of interest were γmean=1.85,
λmean=1.12 and σmean=1.64, satisfying the previous conditions.

In a second statistical analysis, a network efficiency study
revealed that, compared with the corresponding random networks,
the human brain architectural network (as well as other mammalian
species brain networks, as we will see later) presents smaller global
efficiency and bigger local efficiency, i.e. both individual and
mean values of Eglob∗ are under 1, while the corresponding Eloc∗
values are always above 1 (see columns 4 and 5 of Table 1,
respectively). These results are in accordance with those obtained
for brain functional networks corresponding to the same gray
matter parcellation scheme (Achard and Bullmore, 2007). In the
Summary and discussion section we will comment more about
this, including the analysis of other mammalian brain species
results.

Degree distribution analysis

A degree distribution analysis revealed that the studied brain
anatomical networks correspond to a power law regime followed
by a sharp cutoff, as broad-scale networks. Table 1 (columns 6
and 7) presents the obtained α and kcrit parameters corresponding
to a broad-scale regime following the form P(k)~kα−1 exp(k/k crit).

http://www.fil.ion.ucl.ac.uk/spm/ext/%23IBASPM
http://www.fil.ion.ucl.ac.uk/spm/ext/%23IBASPM
http://www.indiana.edu/~cortex/CCNL.html
http://www.indiana.edu/~cortex/CCNL.html


Fig. 1. Mean ACP matrix for 90 gray matter regions defined on the brain of 20 healthy subjects. The element Ci,j is the connectivity value between regions i and
j. Self connections are excluded, which implies a diagonal black line in the matrix. As previously mentioned, this map is symmetric. The color code represents the
index of connectivity.

1069Y. Iturria-Medina et al. / NeuroImage 40 (2008) 1064–1076
Fig. 2 illustrates the inter-subject mean cumulative degree
distribution and its standard deviation. All the corresponding
multiple determination coefficients, R-square (i.e. a measure of
how successful the fit is in explaining the variation of the data, a
value closer to 1 indicates a better fit), were in the order of 0.99.
The mean estimated exponent α was 1.34. Additionally, the
resulting mean parameter kcrit indicate that even the most
connected areas in the brain have a physical constraint of around
5.81 inter-regional connections according to the used gray matter
parcellation. These results are similar to those reported in Achard
et al. (2006) for a human functional network involving the same
gray matter areas (i.e. a degree distribution followed an
exponentially truncated power law with an exponent parameter
α=1.80 and a cutoff degree kcrit=5).
Vulnerability and betweenness centrality analysis

In order to make a first inference about the most critical or
indispensable structures in the brain anatomical networks, the
vulnerability of the 90 defined brain gray matter areas for each
subject were computed using expression (6). Fig. 3a summarizes
the obtained mean vulnerability results. The identified most
vulnerable areas are: putamens, precuneus, insulas, superior
parietals and superior frontals. In a complementary analysis, the
betweenness centrality of each gray matter area was estimated
using expression (8). The identified most central areas agree totally
with the obtained in the previous vulnerability analysis (see Fig.
3b). In both cases, the selected regions were identified by applying
a z-test (H0: z=0) with a 0.05 significance level to the resulting



Table 1
Obtained human brain networks attributes

Subjects γ λ σ Eglob∗ Eloc∗ α kcrit

1 1.65 1.11 1.48 0.94 1.15 1.38 6.49
2 1.52 1.10 1.37 0.94 1.11 1.33 6.11
3 1.64 1.12 1.46 0.93 1.14 1.36 6.13
4 1.83 1.13 1.62 0.92 1.24 1.37 5.72
5 1.67 1.12 1.48 0.93 1.19 1.40 5.85
6 2.00 1.13 1.77 0.92 1.28 1.36 5.72
7 1.69 1.11 1.52 0.93 1.17 1.52 6.62
8 1.92 1.12 1.71 0.93 1.32 1.28 5.35
9 1.51 1.08 1.39 0.95 1.13 1.40 6.47
10 2.37 1.16 2.04 0.90 1.42 1.28 5.34
11 1.77 1.12 1.57 0.93 1.17 1.31 5.52
12 2.19 1.15 1.90 0.91 1.37 1.33 5.50
13 1.61 1.11 1.44 0.93 1.18 1.30 5.86
14 2.13 1.14 1.86 0.92 1.31 1.38 6.01
15 1.83 1.13 1.61 0.92 1.25 1.33 5.59
16 1.91 1.13 1.67 0.92 1.24 1.31 5.65
17 2.05 1.14 1.79 0.92 1.27 1.29 5.43
18 1.87 1.13 1.64 0.92 1.23 1.30 5.32
19 1.73 1.11 1.56 0.93 1.19 1.28 5.78
20 2.11 1.16 1.81 0.91 1.36 1.32 5.81
Mean 1.85 1.12 1.64 0.93 1.24 1.34 5.81
S.D. 0.23 0.02 0.18 0.01 0.08 0.05 0.38
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mean vulnerability and mean betweenness centrality vectors
respectively.
Motifs composition

Since the human brain anatomical networks studied here are
symmetrical, our motifs composition analysis was restricted to find
only those symmetrical motifs that appear significantly increased
in the analyzed networks (let us say motifs with identity number
[ID] 9 and 13 for motifs of size 3, and motifs with ID 75, 95, 159,
178, 194 and 199 for motifs of size 4; see Fig. 4a). In order to carry
out the motifs analysis, 30 reference random matrices were
generated. Fig. 4b and c show the obtained motifs intensity and
motifs coherence scores for each subject, with motifs sizes 3 and 4,
respectively. Notice that for M=3 (Fig. 4b), only a candidate motif
with ID=13 seems to appear significantly increased while forM=4
(Fig. 4c) candidate motifs with ID=159, 194 and 199 are those that
seem to appear significantly increased. Using a 0.05 significance
level, we confirmed that the mentioned candidate motifs show
statistically significant intensity and coherence deviation from the
reference system, being them the obtained symmetrical human
brain motifs of size 3 and 4.

Summary and discussion

In this work some basic statistical aspects of the human brain
anatomical network were analyzed. The studied networks consisted
of white matter connections between 90 cortical and subcortical gray
matter regions, which were defined according to functional and
anatomical criterions (Tzourio-Mazoyer et al., 2002). Connections
among the different regions were estimated for 20 healthy subjects
according to a graph-based DW-MRI procedure (Iturria-Medina et
al., 2007) and the weighted networks analysis was centered in their
small-world attributes, efficiency, degree distribution, vulnerability,
betweenness centrality and motifs composition properties.
To our knowledge, until now only two previous works have
being presented with a similar purpose. In the first previous study
(Hagmann et al., 2006), the analyzed brain network consisted of a
lot of gray matter cubic regions defining nodes whose correspond-
ing arc weights connections were assigned according to the
estimated nervous fiber density (Hagmann et al., 2004) between
them. An unweighted version of the created graph was analyzed
taking into account its small-world and hierarchical properties. In
the second previous study (He et al., 2007), the network
summarized the obtained connectivity patterns between 54 cortical
areas segmented for 124 normal brains. Connections between areas
were estimated using cortical thickness measurements from
magnetic resonance images. The brain anatomical unweighted
network analysis was centered principally in its small-world
attributes and degree distribution properties.

In our first brain anatomical network statistical analysis, small-
world and efficiency properties were studied. The results confirm
the small-world attributes of the human brain anatomical network
(Table 1). The obtained mean parameters of interest were
γmean=1.85, λmean=1.12, with a resulting small-worldness para-
meter of σmean=1.64, satisfying the Watts-Strogatz (1998) and
Humphries et al. (2006) conditions (i.e. λ~1, γH1 and σN1).
However, it is important to notice that according to Hagmann et
al. (2006), small-worldness parameter as well as the relative
clustering coefficient should increases significantly when the
number of brain network nodes increases. Although our results
are in agreement with the results reported by Hagmann et al.
(2006) and He et al. (2007) it should be noted that the used gray
matter parcellation procedures differ in these studies. Addition-
ally, our analysis was based on a weighted network scheme in
contrast to an unweighted scheme as in previous works.
Unfortunately, these procedure differences hinder a reliable
quantitative parameter comparison between these three human
anatomical studies.

Other brain mammalian species (cat and macaque monkey)
present similar small-world anatomical attributes (Sporns and Zwi,
2004; Hilgetag and Kaiser, 2004). Nevertheless, as happens with
previous human studies, a quantitative parameters comparison
between our results and the reported by these post-mortem tracing
animal studies it is not straightforward due to differences in the
employed procedures (mainly the different used gray matter
segmentation schemes).

In addition, the network efficiency analysis provided an
interesting result: compared with the corresponding random
networks, human brain anatomical networks present bigger local
efficiency and smaller global efficiency. These results agree with
that obtained by Achard and Bullmore (2007) for human brain
functional networks, and also with those obtained by us for the cat
cerebral cortex (Eloc∗ =1.37 and Eglob∗ =0.96), the macaque monkey
visual cortex (Eloc∗ =1.24 and Eglob∗ =0.97) and the macaque
monkey cerebral cortex (Eloc∗ =1.86 and Eglob∗ =0.93). In our
opinion, this suggests that mammalian brains evolved trying to
maintain a high local efficiency, which is equivalent to prioritize
the integration among regions specialized in similar types of
functional information and, also, guaranties the tolerance to
possible fails at the local level. On the other hand, the global
efficiency (i.e. the capacity to exchange information among all the
regions) is small compared with corresponding random networks.
A reason for this could be that the global exchange may not be
completely necessary, a fact related to the optimization of the brain
integration process.



Fig. 2. Estimated inter-subject mean cumulative degree distribution (red points) and standard deviation (blue error bars). The green line represents the fitted
exponential truncated power law corresponding to a broad scale regime of the form P(k)∼kα−1exp(k/kcrit), with α=1.34 and kcrit =5.81. Inset: log–log plot of the
mean cumulative degree distribution. The red points indicate observed data, the blue line is the best fitted exponential truncated power law (RBS=0.9987), the
green line is an exponential (Rexp=0.9942), and the orange line is a power law (RSF=0.8005).

1071Y. Iturria-Medina et al. / NeuroImage 40 (2008) 1064–1076
A degree distribution analysis revealed that the studied brain
networks present a power-law regime followed by a sharp cutoff
(Fig. 2), as broad-scale networks. In this kind of networks, the
preferential attachment to the hub nodes has a physical constraint,
which in terms of brain anatomical connections is related to the
maximum number of areas connected to the hub nodes and
responds to structural cost optimization process (e.g. optimization
of the axonal volume covering inter-regional brain connections). In
addition, other anatomical and functional human brain studies have
presented similar degree distribution results (Achard et al., 2006;
He et al., 2007). This supports the broad-scale attributes of the
human brain network; however, final conclusions about this topic
require future analysis to much larger brain networks with
thousands of nodes.

The vulnerability and betweenness centrality analysis allowed
identifying the most critical anatomical nodes in the brain, reveling
quantitative information about the global damage caused by the
hypothetical failure of these nodes. According to the gray matter
parcellation that was used, the most vulnerable and central areas
were (see Fig. 3): putamens, precuneus, insulas, superior parietals
and superior frontals. On the other hand, note that some areas cause
a negative vulnerability to the studied brain networks, which means
that the anatomical brain system can be more efficient without
them (the most representative are: superior temporal poles,
pallidums, supramarginals and hechls). This can be related to the
anatomical cost of their existence, and suggest that even implying a
possible loss in global anatomical efficiency, these structures were
maintained in the brain circuitry through the evolutionary
processes due to their specific important functions. Also, as an
interesting point, we may have expected that thalamic regions
belong to the most critical or indispensable gray matter centers in
the brain. However, the used vulnerability and betweenness
centrality measures are strongly related to the number of
connections of the analyzed areas, and the obtained results indicate
that thalamic regions are not the most connected areas although
surely they have important connections with some specific
anatomic regions.

In the context of brain networks, a structural (anatomical) motif
may consist of a set of brain areas and pathways that can be
potentially engage in different patterns of interactions (Sporns and
Kotter, 2004). In practice, networks motifs are identified as those
subgraphs appearing more frequently in a real network than could
be statically expected (Milos et al., 2002; Onnela et al., 2005). In
this work, it was looked for the first time into the structural motif
composition of the human brain anatomical network. According to
the used gray matter parcellation and the employed weighted motif
detection procedures (Onnela et al., 2005), the obtained structural
motifs were those with ID=13, for M=3, and with ID=159, 194
and 199, for M=4 (see Fig. 4). This result keeps some essential
similarities with the obtained for cat and macaque cerebral cortex
by Sporns and Kotter (2004), that is: motifs at M=4 are the
expanded versions of the obtained motif at M=3, forming a
reciprocally connected nodes chain, where pairs of connections
linking the ends of the chain can be absent; thus, nodes in the



Fig. 3. Mean inter-subject vulnerability (a) and betweennes centrality (b) results for the 90 defined brain gray matter areas. Additionally, using a z-test (H0: z=0)
with a 0.05 significance level, the most vulnerable and central areas were identified. In both cases, these areas are: putamens, precuneus, insulas, superior
parietals, and superior frontals.
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motifs are highly integrated with their neighbors although some of
them do not communicate directly, reflecting the basic principles of
integration and segregation in the brain.

A limitation of the presented study is the symmetrical
configuration of the analyzed brain connectivity matrices, which
is a consequence of the inherent symmetrical properties of DW-
MRI techniques (distinction between afferent and efferent fiber
projections it is not possible yet). This fact causes, for example, the
restriction of the motif composition analysis to consider only those
symmetrical candidate motifs. Nevertheless, a previous work
(Young, 1993) reported that around 85% of the total possible
connections between 73 primate brain areas are reciprocals.

An important element in the DW-MRI Graph-Based methodol-
ogy employed here for estimating brain anatomical connections
(Iturria-Medina et al., 2007) is the angular resolution of the
diffusion-weighted images. In this work we used low angular
resolution data due to a system limitation, but certainly more
reliable results can be obtained using high angular resolution
techniques, which allows a more precise characterization of the
intravoxel white matter orientation (Tuch, 2004; Wedeen et al.,
2005) and thus a more realistic characterization of the brain
structure. Other relevant matter is how to use the obtained ACP
matrices to elucidate which gray matter areas are actually
connected or not. A tentative alternative could be the selection of
a threshold value to create unweighted connectivity matrices.
However, the choice of the appropriate threshold is generally an
elusive point, and that's why in this study we chose to work only
with probability of connections between zones instead of the
simpler on–off connectivity analysis. Additionally, future works
might be directed to explore the effects of different tracking
methods on the network attributes. Surely, common findings across
different tracking methods would provide more confidence for the
anatomical network graphical description. Nonetheless, in recent
studies (unconcluded) we have obtained significant similarity



Fig. 4. Motifs results for motifs size M=3 and M=4. (a) Candidate symmetrical motifs of size 3 and 4. Numbers refer to the motif's identity number (ID). (b)
Obtained motifs intensity and motifs coherence scores for each subject, with M=3. (c) Obtained motifs intensity and motifs coherence scores for each subject,
withM=4. In panels (b) and (c), the color code represents the z-score index. Using a 0.05 significance level, significant motifs found in the analyzed human brain
networks were those with ID=13, for M=3, and with ID=159, 194 and 199, for M=4.
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among the connectivity patterns of healthy subjects using two
different fiber tractography procedures (i.e. the Graph-based
method employed here and the probabilistic tracking method
implemented in the FSL software package [http://www.fmrib.ox.
ac.uk/fsl]). This will be the subject of a separate publication.

Reliable gray matter parcellation is crucial for obtaining
consistent connectivity patterns between individuals. Therefore, a
key element of the used methodology to create the brain
anatomical network is its high dependency on the employed atlas.
Although the atlas used here was carefully created taking into
account relevant anatomical and functional details (Tzourio-
Mazoyer et al., 2002), in the future it might be more meaningful
to use advanced integrative atlases based on finer cytoarchitecture,
myeloarchitecture and MRI procedures (Toga et al., 2006; He et
al., 2007).

Further studies should focus on: improving the characteriza-
tion of the brain anatomical connections (using for example
high angular resolution DW-MRI techniques, a priori connec-
tivity information and others fiber tracking methodologies),
extending the analysis to other interesting network properties
(such as brain complexity, hierarchical features and functional
motif composition) and to other brain connection measures
(such as ACS and ACD), as well as exploring sex and right–left
handed (dis)similarities.

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl
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Appendix A. Mathematical expressions of the used DW-MRI
and Graph-based connectivity model

Arc weights

Given the weighted non-directed graph Gbrain,0= [N0, A0,
W0], the weight of an arc aijaA0 linking two contiguous nodes
i and j (i,jaN0), with spatial vectors position Yri andYrj respec-
tively, is defined as:

wðaijÞuwðajiÞ ¼ PmatðYri ÞPmatðYrj Þ½Pdiff ðYri;DYrijÞ
þ Pdiff ðYrj;DYrjiÞ�; ðA1Þ

where the two basics functions Pmat and Pdiff enclose anatomical
and diffusion information respectively. The first of these
functions was defined as follows:

Pmat
Yr
� Þ ¼ aPWMðYr Þ þ PGMðYr Þ

1þ ða� 1ÞPWMðYr Þ ; ðA2Þ

where PWM and PGM are probabilistic maps of white and gray
matter (WM and GM) respectively and α is a tuning parameter.

The other function, Pdiff(Yri;DYrij), characterizes fiber coherence
along DYrij ¼ Yrj �Yri, which is the direction of the arc aij, and can
be inferred from DW-MRI images using methods for the
description of the intravoxel white matter structure. Here, Pdiff

(Yri;DYrij) is assumed to be the integral of the fiber Orientational
Distribution Function (ODF) over a solid angle β around DYrij:

Pdiff
Yri;DYrij
� � ¼ 1

Z

Z
b
ODF Yri;DYrij

� �
dS: ðA3Þ

Z is a normalization constant chosen to fix to 0.5 the maximum
value of the set fPdiff ðYri;DYrijÞg8YrjaN neig

i
. Note that generally

Pdiff ðYri;DYrijÞpPdiff ðYrj;DYrjiÞ.
Fiber tracking and node–node connectivity

In the previous graph Gbrain,0, where each arc weight is
considered as the probability of its existence, the problem of
searching the most probable path between nodes Yri1 and YriL is
equivalent to find the path qi1 N iL ¼ ai1i2 ; ai2 i3 ; N ; aiL�1 iLf g with
maximum total probability:

P½qi1 N iL � ¼ wðai1;i2ÞjL�1
k¼2 w

condðaik ikþ1 jaik�1ik ÞWðqik�1 N ikþ1
Þ;

ðA4Þ
where the term wcond(aikik+1|aik-1ik) is the conditional weight of the arc
aikik+1 given arc aik−1ik:

wcondðaik ikþ1 jaik�1 ik Þ ¼ PmatðYrikþ1Þ½Pdiff ðYrik ;DYrik ikþ1Þ
þ Pdiff ðYrikþ1 ;D

Yrikþ1 ik Þ�: ðA5Þ
The function Ψ penalizes path curvature between any three

consecutive steps of the path and is selected in a way that allows
only those fiber trajectories with curvature angles smaller than 90°.

Based on this, the estimated nervous fiber trajectory running
from Yri1 and YriL will be given by the most probable path:

q̃i1 N iL ¼ argmax
8qi1 N iL

ðP½qi1 N iL �Þ: ðA6Þ

To solve previous Eq. (A6) an iterative algorithm was proposed
(see Appendix C). Then, quantification of the anatomical
connectivity between nodes Yri1 and YriL is defined according to
the parameters of the connection route among them, specifically as
the lowest weight of the arcs belonging to it:

CnodeðYri1 ;YriLÞ ¼ min
8aaq̃i1 N iL

ðwðaÞÞ: ðA7Þ

Zone–zone connectivity

The expression for the ACS measure between any two gray
matter regions R1 and R2 reads:

CACS
ZoneðR1;R2Þ ¼

X
8Yrm aNs

2

fYrm þ
X

8Yrn aNs
1

fYrn ; ðA8Þ

where the term fYrnð0VfYrnV1Þ denotes the connectivity value of a
node YrnaNs

1 (being N1
s the set of superficial nodes of R1) with R2.

It is defined as the maximum node–node connectivity value (see
Eq. (A7)) among all connections between Yrn and any YrmaNs

2
(being N2

s the set of superficial nodes of R2):

fYrn ¼ max
8Yrm aNs

2

ðCnodeðYrn;YrmÞÞ: ðA9Þ

Similarly, fYrm denotes the connectivity of any node YrmaNs
2

with R1. Note that the first term of expression (A8) quantifies
connections of the region R2 with R1, and the second term
quantifies connections of the region R1 with R2.

ACD measure is estimated as the ACS relative to the number of
nodes belonging to the surfaces of R1 and R2:

CACD
Zone R1;R2ð Þ ¼ CACS

ZoneðR1;R2Þ
jNs

1j þ jNs
2j

: ðA10Þ

ACP represents the probability of regions R1 and R2 to
be connected at least by a single fiber connection. It is estimated as
the maximum connectivity value between nodes of these regions:

CACP
Zoneðr1; r2Þ ¼ max max

8Yrm aNs
2

fYrm ; max
8Yrn aNs

1

fYrn

 !
: ðA11Þ

Appendix B. White matter Orientational Distribution Function

The intravoxel white matter orientational distribution func-
tion (ODF) ψ(û) is defined as the radial projection of the
probability density function (PDF) P(YR ) (Wedeen et al., 2005):

wðûÞ ¼
Z þl

0
R2PðûRÞdR; ðB1Þ

being û a unitary vector andYR ¼ ûR the relative spin displacement.
Considering the PDF for anisotropic Gaussian diffusion:

P YR
� �

¼ ð4ptÞ�3=2ðjDjÞ�1=2e
�YR T D�1YR

4t ; ðB2Þ

Then, substituting in Eq. (B1) and using the identity:

Z þl

0
xmeax

2
dx ¼

C
ðmþ 1Þ

2

� �
2a

mþ1
2

; ðB3Þ

where Γ is the Gamma function, we can obtain the ODF as:

w ûð Þ ¼ 1
C

ûTD�1û
� ��3

2: ðB4Þ

Here, C is a normalization constant which ensures that the ODF
is properly normalized to unit mass.
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Appendix C. Algorithm to solve the most probable path
problem

Given a Brain Graph Gbrain,0= [N0, A0, W0], let us define some
quantities before setting up the algorithm:

|N0|: Cardinality of the set N0, i.e. the number of elements
belonging to set N0.
N0
−s: Set of nodes that belong to Gbrain,0 except node ‘s’,

N�s
0 ¼ N0=fYrsg.

M(Yrv): Map of probabilities of the path between node ‘s’ and all
nodes YrvaN�s

0 ;MðYrvÞ ¼ P½qðYrs;YrvÞ� and M(Yrs)=1.
Ni
neig: Nearest neighborhood of the ith node.

This algorithm proceeds in |N0|−1 iterations as follows:

a) Set initially:
a.1) S̃=N0

−s,

a.2) MðYr iÞ ¼
1; Yri ¼ Yrs;

w0ðasiÞ; YriaN neig
i

0; otherwise:

8<
:

a.3) q̃ðYrs;YriÞ ¼ asi; 8YriaN neig
s

b) Find Yrja S̃ such that MðYrjÞ ¼ max
8YriaS̃

MðYriÞ
b.1) Set a new S̃pS̃=fYrjg
b.2) If S̃ =∅, then Stop; else continue

c) For all Yrm∈Nj
neig and Yrm∈S, set

c.1) qðYrs;YrmÞ ¼ fq̃ðYrs;YrjÞ [ ajmg;
c.2) I f P ½qðYrs;YrmÞ�NMðYrmÞ then
q̃ðYrs;YrmÞ¼ qðYrs;YrmÞ; MðYrmÞ¼ P½q̃ðYrs;YrmÞ�
c.3) go to b).

Finally, the map M(Yrp) for YrpaN0
−s represents the final

probability of the path of maximum reliability according to (A6)
between nodes Yrs and Yrp denoted by qðYrs;YrpÞ.
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