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Abstract

Graph-based brain anatomical network analysis models the brain as a graph whose nodes represent structural/
functional regions, whereas the links between them represent nervous fiber connections. Initial studies of brain
anatomical networks using this approach were devoted to describe the key organizational principles of the nor-
mal brain, while current trends seem to be more focused on detecting network alterations associated to specific
brain disorders. Anatomical networks reconstructed using diffusion-weighed magnetic resonance-imaging tech-
niques can be particularly useful in predicting abnormal brain states in which the white matter structure and, sub-
sequently, the interconnections between gray matter regions are altered (e.g., due to the presence of diseases such
as schizophrenia, stroke, multiple sclerosis, and dementia). This article offers an overview from early gross con-
nectional anatomy explorations until more recent advances on anatomical brain network reconstruction ap-
proaches, with a specific focus on how the latter move toward the prediction of abnormal brain states. While
anatomical graph-based predictor approaches are still at an early stage, they bear promising implications for in-
dividualized clinical diagnosis of neurological and psychiatric disorders, as well as for neurodevelopmental eval-
uations and subsequent assisted creation of educational strategies related to specific cognitive disorders.

Introduction

From its microscopic to macroscopic scale, the brain is
constituted by specialized units that interact functionally

through a complex integration system, supported by a not
less-intricate anatomical substrate. Any disturbance in the
final integration, through the intrinsic malfunctioning of
the specialized units or through an anomalous state of
their interconnection mechanisms, has the potential to
provoke an abnormal brain condition with subsequent
information-processing impairments and the emergence of
undesirable symptoms. Neurological and psychiatric disor-
ders are perhaps the most common expressions of these ab-
errant brain integration processes, where the frequently
observed presence of anatomical abnormalities is thought
to play a fundamental role.

With the recent advent of graph-based brain anatomical
network analyses (Hagmann et al., 2007; Iturria-Medina
et al., 2007; Kaiser and Hilgetag, 2006; Sporns et al., 2000;
Sporns and Zwi, 2004), it is possible to model and to character-
ize topologically, from a local to a global level, the structural
bases that support the brain’s functional behavior. Besides
offering a deeper understanding of the key organizational

principles of brain structural interconnections, anatomical net-
work analyses have also contributed to the identification of
structural changes associated with specific brain diseases,
such as schizophrenia, stroke, multiple sclerosis (MS), Alz-
heimer’s disease (AD), and dementia (for reviews, see Bassett
and Bullmore, 2009; Bullmore and Sporns, 2009; Guye et al.,
2010; Lo et al., 2011; Wen et al., 2011; Xia and He, 2011). Cur-
rent graph-based theoretical analyses devoted to the study of
abnormal brain states can be methodologically subdivided
according to two different approaches: those that propose to
identify statistical subpopulation differences associated with
specific diseases and, more recently, those that propose explicit
models to predict unknown individual brain health states
based on intrinsic information contained in their connectivity
patterns.

Predictive models have potentially strong implications for
clinical applications and for our understanding of neurodeve-
lopmental cognitive disorders. In this article, we provide an
overview of recent graph-based anatomical brain network
studies with a specific focus on those approaches devoted
to the prediction of abnormal brain states. The article is orga-
nized in three primary sections. The first section offers an his-
torical overview of anatomical brain connectivity mapping
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and more recent in vivo anatomical network reconstruction
approaches based on diffusion-weighed magnetic reso-
nance-imaging (DW-MRI) techniques. The second section re-
views current advances on the prediction of abnormal brain
states based on anatomical networks, as well as emphasizes
the dissimilarities between frequently reported subpopula-
tion differences and prediction models. The final section high-
lights important remaining questions and challenges in the
reconstruction of anatomical brain networks and associated
prediction models.

On the History of Anatomical Brain Networks

Invasive anatomical connectivity mapping

Attempts to understand and reveal the intricate structure
of the brain have a long history, with memorable names
such as Herophilus of Calcedon (335–280 BC), Erasistratus
of Ceos (304–250 BC), and Galen of Pergamon (129–199
AC). As the etymological origin of the word anatomy indi-
cates (from the Greek term anatom�e, dissection), contribu-
tions of these revolutionary medics were mainly based on
gross observation of dissected plants, animals, or humans.
Gross dissection was the unique available instrument for
structural brain explorations for centuries. The significant
contributions of these early anatomical studies are undeni-
able. They formed the inspirational bases upon which the
Renaissance marked a new discovery period with the out-
standing role of Andreas Vesalius (1514–1564). The differen-
tiation of the gray and white matters and the description of
specific complex nervous structures (such as the corona radi-
ate, the corpus callosum, and the internal and external cap-
sules) were among the major legacies of Andreas Vesalius’s
works (Vesalius, 1544; see historical discussion by Morecraft
et al. in Johansen-Berg and Behrens, 2009). The posterior de-
velopment of microscopic anatomy, in part due to Marcello
Malpighi (1628–1694), Robert Hooke (1635–1703), and Anto-
nius van Leeuwenhoek (1632–1723), represented the end of
the gross dissection era. From then, new anatomical discover-
ies were based not only on the limited visual inspection of the
naked eye, but also on the information revealed by greatly
magnified images that rapidly allowed for the identification
of smaller brain units (e.g., cells, axons, and nervous fibers).
As expected, the new era of microscopic units led to new chal-
lenges, from which an inevitable question emerged: how are
these living units structurally and functionally inter-related?

More than three centuries after Marcello Malpighi’s work,
which formed the bases of the modern physiology and histol-
ogy sciences, it is still unclear how the basic brain units are
structurally and functionally inter-related. Perhaps, the only
exception is the nematode Caenorhabditis elegans, the only liv-
ing creature for whom its nervous system, relatively simple in
comparison to mammals, has been mapped completely at a
cellular level (White et al., 1986). During the last three centu-
ries, however, an impressive number of techniques have
arisen with the common purpose of decoding the brain’s
structural characteristics, with a specific focus on the organi-
zation of the white matter and subsequent influences on brain
functioning. For instance, staining techniques (i.e., the appli-
cation of stains to highlight structural properties under a mi-
croscope) were developed initially around the latter half of
the 19th century by Carl Weigert (1845–1904) and Camilo
Golgi (1843–1926). Among multiple other applications that

are still used, staining techniques led to the final definition
of the axon as a prolongation of the neuron’s soma (see sum-
mary of Golgi’s works presented by Fabene and Bentivoglio,
1998). They also allowed for the first time to trace axonal
pathways between cortical regions, particularly in small-
brain animals (Cajal, 1889a; Cajal, 1889b; Cajal, 1891; Cajal,
1892). Degeneration techniques use information provided
by anterograde and retrograde processes related to lesions
within specific brain regions, thereby allowing the inference
of existing fiber pathways and corresponding connectivity
patterns. Anterograde processes, also known as Wallerian de-
generation (Waller, 1850), consist in the degeneration of distal
parts of axons connecting an injured brain region with other
cortical regions; retrograde processes, on the other hand, con-
sist in the degenerative spreading from the most distal parts
of the axons to the cell bodies (Gudden, 1870). Invasive
tract tracer techniques, perhaps the most multifaceted of all
these methods, are based on axonal flow mechanisms as
basic vehicles to transport detectable substances and to eluci-
date in this way long-fiber connections. Anterograde and ret-
rograde tracing techniques are also used in a great variety of
applications, especially when are combined with other meth-
ods (e.g., immunohistochemical, electron microscopy, or elec-
trophysiological approaches; see Köbbert et al., 2000).

Polarized light imaging (PLI) is a new promising tech-
nique to explore the postmortem brain fiber architecture
by passing linearly polarized light through brain tissue
and measuring local changes in the polarization of light
(Axer and Keyserlingk, 2000; Axer et al., 2001; Axer et al.,
2008; Axer et al., 2011; Brosseau, 1998; Scheuner and Hut-
schenreiter, 1972). Recently, Axer and colleagues proposed
the 3D-PLI method as a new tool to map the three-dimen-
sional course of fiber tracts in the postmortem human
brain with an ultrahigh resolution (i.e., voxel sizes around
100 lm isotropic; Axer et al., 2011). Besides contributing to
a deeper understanding of the brain’s anatomical connectiv-
ity, results obtained with this approach may finally consti-
tute the appropriate gold standard to evaluate the
accuracy of current and future in vivo tract-mapping tech-
niques (e.g., DW-MRI experiments).

Noninvasive anatomical connectivity mapping

Much of the current knowledge about connectional neuro-
anatomy was discovered through the use of histological stain-
ing, degeneration methods, and tract-tracing techniques (for
reviews, see Schmahmann and Pandya, 2006; Morecraft
et al. in Johansen-Berg and Behrens, 2009). However, their in-
vasive nature makes their application to the living human
brain impossible. Consequently, even until almost the end
of the 20th century, most of our understanding of neuroana-
tomical connectivity of the human brain was based on an in-
sufficient number of postmortem studies and readapted
concepts from the more explored connectional neuroanatomy
of other species, especially from nonhuman primates.

The introduction of DW-MRI techniques for the structural
exploration of biological tissues (Basser et al., 1994; Chenevert
et al., 1990; Le Bihan and Breton, 1985; Le Bihan et al., 1986)
resulted in a tremendous impulse to study in vivo brain anat-
omy and, in particular, the white matter structure. Basically,
DW-MRI techniques quantify the motion of water molecules
in tissues, which is known to be highly anisotropic in certain

2 ITURRIA-MEDINA



white matter regions (e.g., with a preferential movement
along the nervous fibers). The formalism of the diffusion ten-
sor model (DTI) (Basser et al., 1994) allows the anisotropic
process characterization of biological tissues based on DW-
MRI information, under the approximation of a symmetric
tensor that describes water molecular mobility along different
coordinate axes and that can be geometrically represented by
an ellipsoid. The diffusion tensor ellipsoid, or more precisely
its main axis, was initially assumed to indicate local main
fiber orientations on white matter tissues and was inge-
niously used to trace long axonal pathways using determinis-
tic algorithms (Basser et al., 2000; Conturo et al., 1999; Jones
et al., 1999; Mori et al., 1999). For the first time, it was thus
possible to use a noninvasive method to map connectional
neuroanatomic circuits in the living human brain. However,
further validation analyses revealed that, at least at the typi-
cal spatial resolution acquired in humans (e.g., with image
voxel size of around 2 · 2 · 2 mm3), fiber tractography ap-
proaches based on diffusion tensor’s main axis have a low ca-
pacity to deal with complex intravoxel fiber configurations,
such as fiber crossings and fanning. They were also shown
to be highly sensitive to the influence of MR signal noise.

High-angular-resolution diffusion imaging (HARDI; Tuch
et al., 2002a) and probabilistic fiber tractography algorithms
were subsequently proposed to overcome the limitations of
the diffusion tensor model and traditional deterministic
fiber tractography. HARDI consists in the acquisition of
DW-MRI images for a larger number of diffusion gradient di-
rections than typically required for the diffusion tensor model
estimation. This allowed for a more detailed mapping of mul-
tiple, complex intravoxel fiber orientations, for which differ-
ent reconstruction approaches have been proposed, such as
qball imaging (Canales-Rodrı́guez et al., 2009; Tuch, 2002b;
Tuch, 2004), diffusion spectrum imaging (DSI; Wedeen
et al., 2005), diffusion orientation transform (Canales-Rodrı́-
guez et al., 2010a; Özarslan et al., 2006), spherical deconvolu-
tion (Canales-Rodrı́guez et al., 2010b; Dell’Acqua et al., 2007;
Tournier et al., 2004; Tournier et al., 2007), and 3D curve infer-
ence (Savadjiev et al., 2006; Savadjiev et al., 2008). Probabilis-
tic tractography uses uncertainty of the estimation of nervous
fiber orientations to compute a large number of possible
paths from the seed point (Behrens et al., 2003a; Behrens
et al., 2007; Parker and Alexander, 2003; Parker et al., 2003);
anatomical connection probability among seed and target
points is evaluated as the frequent relation between number
of connecting paths and the number of generated paths.
Alternatively, global tractography algorithms explore
through the wide spectrum of possible fiber trajectories to se-
lect as final candidates those trajectories that maximize a
global goodness-of-fit criterion (Iturria-Medina et al., 2007;
Jbabdi et al., 2007; Sherbondy et al., 2008, 2009; Tuch,
2002b). For a recent review on DW-MRI fiber tractography,
see Jbabdi and Johansen-Berg (2011).

Connectional anatomy by the structural
brain network approach

One possible way of understanding the current explosion
of brain network studies (with an impressive increase in the
number of reports about anatomical, morphometrical, and
functional networks) is the striking similarity between
graph representations and our most common intuitive mental

representation of the brain. At each possible scale, the brain
can be imagined as a set of equivalent units (e.g., neurons,
neuronal subpopulations, and functionally/anatomically
segregated regions) interacting dynamically among them
(via dendrites or axonal prolongations). In principle, to define
a graph, we only need a set of elements and some knowledge
about their interrelations. In addition to allowing organiza-
tion and visualization of data, the graph theory also offers to-
pological quantitative measures that, correctly applied, may
help to characterize each network in terms of its local and
global capacities to deal with the information flow. However,
as Olaf Sporns mentioned in a recent review (Sporns, 2011a),
around 20 years ago (until the early 1990s) almost no one in
neuroscience was interested in graph theory. From this affir-
mation rises an interesting question: what happened in these
two decades that motivated the increasing interest of the neu-
roscience community for graph theoretical analysis? This sub-
section attempts to answer this question (see Table 1 for a
brief description of graph theoretical concepts employed
throughout the text, including associated tentative physiolog-
ical interpretations within the context of anatomical brain net-
works).

Early studies that collected neuroanatomical information
about gross cortical–cortical connections in some mammalian
species (i.e., rat, cat, and macaque monkey) evidenced the dif-
ficulty of understanding the organizational principles of such
complex systems. A high number of connections and nontriv-
ial patterns are common across long-range connectional ma-
trices collected for the macaque monkey (Felleman and Van
Essen, 1991; Hilgetag et al., 2000; Stephan et al., 2000;
Young, 1993), the cat (Hilgetag et al., 2000; Kötter and Som-
mer, 2000; Scannell et al., 1995; Scannell et al., 1999) and
the rat (Burns et al., 2000). The exciting complexity of these
primary connection datasets inspired the emergence of opti-
mization techniques and hierarchical analysis that demon-
strated the not entirely random, nor entirely regular
organization of cortical–cortical connectivity networks (Felle-
man and Van Essen, 1991; Scannell et al., 1995; Young, 1992;
Young, 1993). Significant progress on graph theoretical anal-
ysis, mainly applied to the study of social networks (Mil-
gram, 1967; Travers and Milgram, 1969), and in particular
the publication of a landmark article (Watts and Strogatz,
1998), captured the attention of neuroscientists. The method-
ologies devoted to the study of brain connectivity patterns
were then oriented in a new direction. Previous gross corti-
cal–cortical connections were reanalyzed using graph theo-
retical elements. Importantly, small-world connectional
attributes, as well as the existence of highly connected/cen-
tral hub regions, were found for all species (Table 1; Hilgetag
and Kaiser, 2007; Kaiser and Hilgetag, 2006; Sporns et al.,
2000; Sporns and Zwi, 2004; Sporns et al., 2007). Additional
analysis of structural and functional motif compositions
(Table 1) supported the idea that while brain networks max-
imize both the number and the diversity of functional motifs,
the repertoire of structural motifs is relatively small (Sporns
and Kötter, 2004). These results were in line with the findings
of a set of remarkable studies that previously combined graph
elements with information theory principles to analyze brain
integration, complexity, matching, and degeneracy processes
(Sporns et al., 2000; Tononi et al., 1992; Tononi et al., 1994;
Tononi et al., 1996; Tononi et al., 1999). Results showed that
the anatomical organization of the brain responds to an
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environmentally driven demand for highly complex neural
activity, reflecting a high structural potentiality to support
functional specialization and integration simultaneously
(Sporns et al., 2000; Sporns, 2011a).

The graph framework then began to play a fundamental
role, not only in the exploration of animal neuroanatomical
connectional information, but also to discover the principles
of functional brain interactions in humans. Several studies an-
alyzed the functional brain networks reconstructed under a
considerable heterogeneity of connectivity models and tem-
poral datasets, including functional MRI, electroencephalog-
raphy, magnetoencephalography, and multielectrode arrays
(Achard et al., 2006; Achard et al., 2008; Bassett et al., 2006;
Eguı́luz et al., 2005; Ferrarini et al., 2008; Salvador et al.,
2005; Schwarz et al., 2008; Stam, 2004; Yu et al., 2008). Results
showed short characteristic path lengths, a high inherent ten-
dency to cluster nodes into strictly connected neighborhoods,
economic small-world attributes at many frequency intervals,
existence of hub regions, scale-free distributions, and stable
modular community structures (Table 1; for related reviews,
see Bassett and Bullmore, 2009; Bullmore and Sporns, 2009;
Guye et al., 2010; Sporns, 2010). Additionally, these results
highlighted the potential of the graph framework to analyze
organizational principles of functional interactions and
inter-regional connectional anatomy, as well as its rele-
vance for the understanding of neurophysiological integra-
tion processes.

However, due to the prominent lack of detailed region–
region connectional anatomy information for the human
brain, its structural graph-based representation and analysis
arose considerably later than earlier studies of other animal
species (i.e., rat, cat, and monkey) and even later than
human brain functional network studies. To our knowledge,
by the end of 2005, only three unpublished academic studies
had considered the problem of constructing region–region
human brain connectivity matrices using DW-MRI fiber trac-
tography techniques. In his PhD thesis, Tuch (2002b) pre-
sented a connectivity matrix between 25 distant points in
the cortex, each point representing a different anatomical re-
gion, running from the inferior aspect of occipital cortex to the
crown of the superior frontal gyrus. Moreover, the anatomical
connection strengths between 13 distant gray matter regions
were evaluated by means of a connectivity measure designed
to avoid undesirable distance effects on probabilistic tractog-
raphy results (Iturria-Medina, 2004, college diploma thesis).
This approach was later applied to the formulation of neural
mass models and electroencephalogram generation with ana-
tomically constrained coupling (Sotero et al., 2005; Sotero
et al., 2007). Hagmann in his PhD thesis (2005) went further
than creating an anatomical connectivity matrix, now be-
tween small regions covering all the gray matter of a healthy
subject, and proposed studying the topology of the resultant
network by means of graph theoretical measures. For the first
time, the small-world attribute and hierarchical organization
of the anatomical human brain network were reported. In ad-
dition, Hagmann introduced the connectome concept in
agreement with the simultaneous definition of Sporns and
colleagues (2005) related to the mapping of structural inter-
connections between neural elements at different scales.

In 2007, Iturria-Medina and colleagues proposed a graph-
based DW-MRI tractography algorithm that expressed the
tractography in terms of shorter path search in an anatomical

weighed graph (Iturria-Medina et al., 2007). This formalism
allowed a straightforward definition of anatomical connectiv-
ity measures (e.g., strength, density, and probability) between
the regions of interest, which were used in a subsequent study
devoted to the reconstruction and characterization of whole-
brain anatomical weighed networks of 20 healthy human sub-
jects (Iturria-Medina et al., 2008). The study reported robust
small-world attributes and broad-scale degree distributions
(Table 1) for the analyzed networks of 90 cortical and subcor-
tical gray matter structures (Anatomical Automatic Labeling
[AAL] parcellation scheme; Mazziotta et al., 1995), with the
presence of hub central nodes (e.g., precuneus, insula, supe-
rior parietal, and superior frontal cortex) and structural
motif compositions similar to those identified in connectional
matrices derived from anatomical tract tracing in the cat and
macaque cortex (Sporns and Kötter, 2004). Hagmann and col-
leagues (2007, 2008) considered the advantages of using DSI
tractography (Hagmann et al., 2005; Wedeen et al., 2008) to
reconstruct the anatomical brain networks of healthy
human subjects. In the first study (Hagmann et al., 2007)
was reported one-scale degree distribution and small-world
attributes of networks with 500 to 4000 nodes, covering all
the cortical gray matter regions and the thalamus of 2 sub-
jects. In the second study (Hagmann et al., 2008), anatomical
networks with a spatial resolution of 998 nodes and a lower
resolution of 66 nodes, covering all the cortical gray matter re-
gions of 5 healthy subjects, were analyzed. This work
reported the consistent presence of a structural core (with in-
ternal regions sharing high degree, strength, and centrality)
within the posterior medial and parietal cerebral cortex, as
well as the presence of several distinct temporal and frontal
modules. Moreover, a high correspondence between anatom-
ical connectivity and resting-state functional connectivity pat-
terns within the same subjects was found.

Several other studies have reconstructed anatomical net-
works for the healthy human brain using DW-MRI tractogra-
phy techniques (Fig. 1 illustrates key steps involved in
network reconstruction). The influence of node selection on
anatomical network properties was analyzed by Zalesky
and colleagues (2010a), who found a considerable network
dependency on the choice of parcellation schemes (we com-
ment more about this issue in the Current Limitations and
Future Directions section). Analysis of age and gender effects
on the network properties (Gong et al., 2009) revealed an age-
related reduction of overall cortical connectivity and local ef-
ficiency, with a shift of regional efficiency from the parietal
and occipital to frontal and temporal neocortex in older
brains. Moreover, women presented greater overall cortical
connectivity than men, and the underlying organization of
their cortical networks was also found more efficient, both lo-
cally and globally. Bassett and coworkers (2010a) investi-
gated the conservation of network architectural properties
across various methodologies, as well as the reproducibility
of results across multiple scanning sessions. They found con-
sistent basic connectivity properties and reproducible graph
metrics for different intravoxel fiber orientation models (i.e.,
DTI and DSI). This group also reported (Bassett et al.,
2010b) that human anatomical and morphological brain net-
works obey Rent’s Rule, an isometric scaling relationship be-
tween the number of processing elements and the number of
connections commonly observed for large-scale integrated
computer circuits (Landman and Russo, 1971). Interestingly,
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these authors found that estimated Rent exponents of both
anatomical and morphological human brain networks can ex-
plain the allometric scaling relations between the gray and
white matter volumes across a wide range of mammalian
species, from the mouse opossum to the sea lion. In another
multispecies study, Iturria-Medina and colleagues (2011a)
reported consistent connectional asymmetry patterns across
human right-handed subjects and a macaque monkey subject,
suggesting that general organizational asymmetries are
broadly similar between these primate species (i.e., the right
hemisphere is significantly more interconnected and efficient,
whereas the left hemisphere has more central or indispens-
able regions for the whole-brain anatomical network).

This latter study (Iturria-Medina et al., 2011a) emphasized
the use of three different probabilistic tractography algo-
rithms that provided more stable results in comparison to
those obtained separately for each tracking algorithm. As a
consequence, the final results were less influenced by the ini-
tial choice of a tracking algorithm that is potentially a signif-
icant source of bias. More recently, Bastiani and coworkers
(2012) analyzed the effects of using different fiber tractogra-
phy algorithms, intravoxel fiber orientation models, and trac-

tography parameters on the final properties of the derived
anatomical networks. The authors found a large effect of trac-
tography algorithm and parameter selection on the network
connectional density and topological properties. These results
are of particular importance to the researcher planning a new
brain network analysis using the DW-MRI data, since it pro-
vides crucial comparative results based on more frequently
used anatomical network reconstruction approaches. Simi-
larly, Duarte-Carvajalino and coworkers (2012) provided cru-
cial methodological information related to the influence of
different region–region arc weight normalization procedures
on the characterization of individual anatomical network
properties. Their results illustrate how different arc weight
normalizations induce considerable differences on classifica-
tion accuracies related to sex and kinship, as well as on corre-
sponding intergroup network topological comparisons.

From the Macroscale Connectome to the Prediction
of Abnormal Brain States

The last 5 years have seen an increase in the number of
publications addressing the identification of morphometrical,

FIG. 1. Key steps involved in the reconstruction of anatomical brain networks using connectional information extracted from
diffusion-weighed magnetic resonance-imaging (DW-MRI) data. (a) Node definition following an anatomical, functional, or
arbitrary gray matter parcellation scheme. In this example, nodes correspond to 90 cortical and subcortical structures of the ana-
tomical automatic labeling (AAL) gray matter parcellation scheme (Mazziotta et al., 1995). (b) Estimation of intravoxel fiber ori-
entations from the DW-MRI data. In the figure, fiber orientational distribution functions obtained using a spherical deconvolution
approach (Tournier et al., 2007). Inset figure provides detail of the high fiber orientation coherence around the splenium of the
corpus callosum. (c) Reconstruction of the axonal nervous fiber trajectories. Illustrated fiber trajectories connect the thalamus and
the superior frontal gyrus on both hemispheres, and were estimated using a graph-based tractography algorithm (Iturria-Medina
et al., 2007). (d) Anatomical connectivity matrix creation combining the structural information contained on the estimated fiber
trajectories and the considered gray matter parcellation. Connectivity values should be defined trying to capture the physiological
properties of the underlying connections and/or the evidence supporting the existence of each connection. In the presented ma-
trix, the element Ci,j corresponds to the probability of connection between regions i and j belonging to the AAL scheme (Iturria-
Medina et al., 2007, 2008). Self-connections were excluded, which implies a diagonal black line in the matrix. (e) Whole-brain net-
work representation (optional). In the illustrated graph, the points represent considered anatomic regions; lines correspond to
estimated connections between them; and line widths reflect the corresponding arc weights; for an alternative network represen-
tation, see the circular representation method proposed by Irimia et al., 2012.
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anatomical, and functional alterations associated with abnor-
mal brain states by means of brain network theoretical ap-
proaches (for recent reviews, see Bassett and Bullmore,
2009; Bullmore and Sporns, 2009; Guye et al., 2010; Lo
et al., 2011; Wen et al., 2011; Xia and He, 2011). In particular,
anatomical brain networks reconstructed using DW-MRI
techniques have been applied to the study of diseases such
as schizophrenia (Skudlarski et al., 2010; van den Hevel
et al., 2010; Wang et al., 2012; Zalesky et al., 2011), MS
(Shu et al., 2011), AD (Lo et al., 2011), epilepsy (Zhang
et al., 2011), and amyotrophic lateral sclerosis (Verstraete
et al., 2011). These studies have contributed to the recogni-
tion of anatomical alterations and related abnormal patho-
physiological mechanisms, mainly based on the finding of
modified network topological properties (e.g., clustering,
characteristic path length, and small-worldness indices)
and the detection of disconnected subnetworks (Zalesky
et al., 2010b; Zalesky et al., 2012). In both cases, these find-
ings emerged from statistical comparison between subpop-
ulations (i.e., typically a patient group and an age- and
gender-matched control group).

Graph-based theoretical analyses comparing statistically
different subpopulations are often considered as potential
tools for the identification of biomarkers for clinical diagnosis
(i.e., indicators of the severity or presence of some pathophys-
iological state, with the capacity of quantifying individual
normal/abnormal process or pharmacologic responses to
therapeutic interventions). However, it is important to note
that a given methodology proposed as a potential biomarker
should not only demonstrate its capacity to identify subpop-
ulation differences, but also show a predictive power for each
new individual. This issue has caused several recent misinter-
pretations. While the identification of significant differences
between subpopulations satisfies the purpose of identifying
dissimilar group tendencies (for a given anatomical, morpho-
metrical, and/or functional brain property), a more complex
predictive analysis is required to distinguish to which group
new individuals belong.

In other words, the finding of statistically significant differ-
ences between subpopulations does not necessarily imply an
accurate prediction for each new individual, and logically,
they have different conceptual interpretations. The former
(the finding of statistically significant differences between
subpopulations) occurs when the probability of observing
the effect of interest by chance is negligible, given the cur-
rently analyzed dataset. The latter (the accurate prediction
for new individuals) depends on the capability of the method
to classify or to predict new instances of individual datasets.
It is common to obtain low prediction accuracy after ensuring
that the features used for the prediction are statistically differ-
ent between subpopulations. Consequently, when pursuing
prediction accuracy, the report of test errors is a mandatory
procedure (Bishop, 2006).

As a particular example of the previous issue, it is not the
same to identifying group differences related to age (Gong
et al., 2009) than to predict the age of a given subject to quan-
titatively investigate if abnormal structural/functional matu-
rity properties are present compared to its chronological age
(Dosenbach et al., 2010; Duarte-Carvajalino et al., 2012; Rob-
inson et al., 2010). The former can provide evidence about the
transformations related to the aging process, and in some
cases can contribute to a better understanding of the patho-

physiological mechanisms underlying behavioral differences
between compared groups. The latter (i.e., the prediction of
individual brain maturity states) represents an attempt to un-
derstanding the age–behavior relationship of a subject, given
specific structural/functional brain properties. This approach
is more closely related to the individual requirements of clin-
ical diagnosis (in the simplest definition, the identification of
the phenomenon causing specific clinical symptoms in a pa-
tient). It is also more useful for individual neurodevelopmen-
tal evaluation, something with a possible outcome on the
assisted creation of educational strategies for subjects with
cognitive disorders. For these reasons, and as mentioned in
the Introduction section, this article is not intended to exam-
ine studies in which the main purpose was only to recognize
statistical subpopulation differences in the anatomical net-
works associated with specific brain diseases (for a review
more focused on this kind of analysis, see Xia and He,
2011). Rather, by focusing on the exigent requirements of clin-
ical applications and, specifically, of individual clinical diag-
nosis, the following subsections are devoted to the
description and analysis of recently published graph-based
theoretical studies in which anatomical brain networks have
been applied to the prediction of abnormal brain states.

Secondary degeneration after stroke and spectral
clustering of anatomical communicability networks

Anterograde or retrograde axon degeneration process and
adaptive anatomical changes are some of the structural
changes after a stroke (i.e., a sudden blockage or rupture of
a blood vessel in the brain that can be clinically silent and
have the potential to provoke a wide variety of damages,
such as loss of speech, weakness on one side of the body, or
dementia later on in life; Biernaskie and Cobett, 2001; Dan-
cause et al., 2005). In 2009, Crofts and Higham proposed to
use a new weighed anatomical network communicability
measure to distinguish local and global differences between
patients with stroke and controls. This network measure ex-
tended the previous concept of network communicability
(Estrada and Hatano, 2008) to the case of weighed networks,
thereby addressing the issue that the existence of a direct edge
does not necessarily capture the degree of connectedness be-
tween a given pair of nodes if they can be joined through a
long chain of edges.

In the context of anatomical brain networks, communica-
bility should be understood as a measure of how easily infor-
mation can flow between network nodes (anatomical or
functional regions), using direct and indirect fiber path con-
nections (Crofts and Higham, 2009). In this study, anatomical
and communicability networks for 9 patients with stroke (at
least 6 months after the first, left hemisphere, subcortical
stroke) and 10 age-matched controls were defined using the
Harvard-Oxford cortical and subcortical structural atlases,
as implemented in FSL Software with 56 anatomically distinct
gray matter regions (Smith et al., 2004), and estimating fiber
pathways by means of a probabilistic tractography algorithm
(Behrens et al., 2003a). To explore how accurately the recon-
structed networks can represent the known stroke/control
groupings, unsupervised spectral clustering based on singu-
lar-value decomposition (SVD) was then performed over
the set of all region–region connectivity or communicability
values. Spectral clustering algorithms based on SVD consider
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the eigenvalues and eigenvectors of the Graph-Laplacian ma-
trices (Table 1) corresponding to the studied networks
(Higham et al., 2007); therefore, within the framework of an-
atomical/communicability brain networks, this clustering
procedure evaluates intrinsically the robustness and hierar-
chical organization of each individual network, as well as
the dynamics of the potential functional interactions. The re-
sults indicated a perfect classification between patients with
stroke and controls (i.e., a correct separation/distinction in
all cases between pathological and healthy subjects) for the
communicability networks, whereas classification based on
the purely anatomical networks or their normalized version
had not successfully dealt with the separation issue.

A second, related study (Crofts et al., 2011) focused on
finding structural evidence related to secondary degeneration
of nervous fibers after a stroke, which supposedly occurs in
the remote regions connected directly or indirectly with the
infarct zone. In line with the preceding study, connectivity

and communicability hemispheric subnetworks were recon-
structed for 9 patients with chronic stroke and 18 age-
matched controls. Interestingly, the unsupervised spectral
clustering of reconstructed subnetworks correctly separated
patients from controls based not only on the information re-
lated to the damaged left hemisphere, but also on the data
from the contralesional right hemisphere (see Fig. 2). Results
based on the communicability network measure again pro-
vided better prediction accuracy than those obtained using
direct anatomical connectivity or even using the anatomical
and communicability degrees of the considered regions.

In a next step, the authors then tried to identify the brain
regions that drove the separation between groups. To this
aim, they used the same SVD results (Higham et al., 2007),
but also taking into account the spectral information corre-
sponding to the network nodes (i.e., the left singular value
u[2] consisting of 56 components corresponding to the same
number of hemispheric brain regions). Figure 2b shows the

FIG. 2. Unsupervised spectral
clustering results for
communicability hemispheric
subnetworks. (A) Ordered
clustering results over the set of all
region–region communicability
values (circles denote patients with
stroke and crosses denote controls).
Note the successful group
separation based on data from both
left (lesioned) and right
hemispheres. (B) Spectral clustering
results corresponding to the
network nodes (i.e., 56 left singular
value components corresponding to
the same number of hemispheric
brain regions), where the extreme
values (most positive or most
negative) indicate the brain regions
whose communicability patterns
can be assumed to be responsible
for the correct subject separation
into patients and controls. Red
circles correspond to regions found
to have diminished
communicability scores in patients
with stroke, while black squares
correspond to regions showing a
relative increase. Note the extreme
positive values of homologous
regions such as the left/right
caudate nucleus and the left/right
planum temporales, which might
reflect secondary nervous fiber
degeneration. Furthermore,
increased communicability values
for regions such as the left inferior
temporal gyrus, the left cingulate
gyrus, the right orbitofrontal cortex
and the right temporal fusiform
cortex can be interpreted as evidence
of adaptive and plastic poststroke
changes. Figure adapted with
permission from Crofts et al., 2011.
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obtained u[2] components, where the extreme values (most
positive or most negative) correspond to the regions whose
communicability patterns can be assumed to be responsible
for the correct separation between subjects. Note, for exam-
ple, the extreme values of homologous regions such as the
left/right caudate nucleus and the left/right planum tempo-
rale, which were also found with a significantly reduced com-
municability degree. In general, all areas with reduced
communicability tended to be structurally located around
the stroke lesions in the left hemisphere (i.e., the internal cap-
sule and the basal ganglia) or around the homologous regions
in the contralesional hemisphere, which can be interpreted as
consistent evidence of secondary degeneration of nervous fi-
bers. These effects on the contralesional hemisphere’s white
matter integrity have not been observed consistently in
other studies using more conventional measures, such as frac-
tional anisotropy (FA; Liang et al., 2007; Bosnell et al., submit-
ted for publication), which reflects the increased sensibility of
communicability networks to subtle changes in the brain.
Additionally, as a tentative sign of adaptive and plastic post-
stroke changes, patients showed significant increased com-
municability compared with controls in some regions. This
observation is in line with described anatomical and func-
tional plasticity in patients with stroke ( Johansen-Berg
et al., 2002; Lotze et al., 2006; Schaechter et al., 2009). How-
ever, preliminary correlation analyses between the communi-
cability degree of each region and the Fugl-Meyer scores, the
stroke volumes, and the times poststroke revealed nonsignif-
icant linear relationships. Thus, the hypothesis of an in-
creased communicability reflecting adaptive and plastic
poststroke changes should be considered with care and re-
quires further validation.

Dysmyelination/demyelination process and
network-measure spatial representations

Animal models have traditionally been a key element in
the design and validation of therapeutic interventions. For in-
stance, the shiverer mouse is a mutant model relevant to the
study of myelin-related diseases, since it is characterized by a
deletion of the gene encoding myelin basic protein, resem-
bling the white matter dysmyelination and demyelination
process that takes place in humans due to inflammatory pro-
cesses, as in patients affected by MS (Filippi and Agosta, 2010;
Ormerod et al., 1987; Tyszka et al., 2006) and acute dissemi-
nated encephalomyelitis (ADE) (Almendinger et al., 2010;
Jones, 2003). On the other hand, both MS and ADE have a
wide variety of clinical and radiological phenotypes, with
atypical cases that confound accurate diagnoses. Traditional
image interpretation requires expert intervention, which is
commonly based on subjective tuning parameters. For exam-
ple, the McDonald criteria for MS require around nine visible
T2 lesions (McDonald et al., 2001).

Motivated by limitations of conventional MR diagnostic
tools for myelin-related diseases such as MS and ADE, Itur-
ria-Medina and coworkers (2011b) investigated whether possi-
ble changes on the anatomical brain networks in the shiverer
mutant mouse model reflect individual dysmyelination/de-
myelination process, allowing for the automatic discrimination
of myelin-affected subjects. The study used a super-resolution
DW-MRI dataset (with 80-lm isotropic voxel size) for six shiv-
erer (C3Fe.SWV Mbpshi/Mbpshi) and six background control

(C3HeB.FeJ) mice (this dataset is available as a part of the Bio-
medical Informatics Research Network initiative).

For each mouse, whole-brain axonal trajectories were
reconstructed using three different fiber tractography algo-
rithms: traditional streamline (Mori et al., 1999), tensor line
(Weinstein et al., 1999), and tensor deflection (Lazar et al.,
2003). Then, three individually weighed networks were
reconstructed, in which each node corresponded to an ana-
tomic brain region (150 gray matter regions in total); arcs con-
necting nodes corresponded to hypothetical white matter
links; and arc weights were assigned according to the degree
of DW-MRI evidence, supporting the existence of white mat-
ter connections between regions. In fact, arc weights between
any two nodes were defined as the number of connecting
fiber trajectories relative to the superficial area of the nodes,
where each fiber path was quantified according to the mean
of the inverse of its mean diffusivity values (i.e., (1/N)Si(1/
MDi), where MDi is the mean of the diffusion tensor’s three
eigenvalues on each voxel i = 1..N belonging to the path).
The selection of MD as an indirect measure of changes in po-
tential fiber pathway efficacy in the mouse brain was moti-
vated by the fact that MD is a measure of the local average
molecular motion, independently of tissue directionality,
which is expected to reflect the cellular size and, conse-
quently, fiber integrity (Basser et al., 1994; Cercignani
et al., 2001; Pierpaoli et al., 1996). Importantly, significant
decreases of MD have been reported for many regions of
pathological brains characterized by myelin deficiency,
whereas only small variations (practically not informative)
of other diffusion tensor-invariant scalars such as FA were
found (Bar-Shir et al., 2009; Tyszka et al., 2006). Finally,
for the whole-brain anatomical networks, six different topo-
logical properties were evaluated: clustering, characteristic
path length, modularity, global efficiency, local efficiency,
and small-worldness (Table 1).

Before testing the discrimination power of the evaluated
six topological properties (each one recalculated for each net-
work produced by the different fiber tracking algorithms),
subject data were graphically represented to organize and in-
terpret intuitively the results. For each network measure,
its characteristic representation space was defined, in which
subjects were represented by unique points in a 3D space
attending to its resulting topological properties (coordinates
corresponding to different tracking algorithm outcomes;
Table 1). Figure 3 shows locations of shiverer and control
mice in the 3D Euclidian spaces corresponding to the created
network measure representation spaces. In each representa-
tion space, subjects are graphically represented and deter-
mined by a unique spatial point, with length, width, and
depth coordinates assigned according to network values
obtained from three different fiber-tracking algorithms.
Note the clear spatial subdivisions between control and shiv-
erer mice for almost all the network measures, suggesting
that there might exist specific network subspaces correspond-
ing to specific brain disorders, at least at the super-resolution
imaging considered. Linear discriminant analysis (LDA) was
then used (Bishop, 2006) to assess the between-group dis-
criminative reliability of these anatomical network topologi-
cal features. For each network measure, the mean boundary
hyperplane that best separated the original representation
space into two subspaces was obtained, with subjects who
presented similar spatial positions (anatomical network
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attributes). In addition, for each network measure and for
their overall combination, the individuals’ conditional proba-
bilities of belonging to the control group (i.e., the individual-
ized probabilistic evidence supporting a normal connectional
anatomy) were obtained by means of the LDA, as an anatom-
ical index of the likelihood of being a healthy subject.

The high accuracy of predictions (e.g., in the range 91.6%–
100% correct for four of the six topological network measures)
and clear spatial subdivisions between control and shiverer
mice (see Fig. 3a, 3d, 3e, and 3f) supported the point of
view that complex brain network analyses are promising
tools for finding interpretable imaging biomarkers. In addi-
tion, the introduced network measure representation space
concept is a good alternative to summarize and visualize
the network topological properties estimated by different
methodologies (e.g., different fiber-tracking algorithms or
even different network extraction modalities, such as DW-
MRI, electroencelography, magnetoencelography, and func-
tional MRI). However, before reliable clinical applications
can be considered, further studies need to explore the follow-
ing issues. First, the reliability of the proposed prediction pro-
cedure to reflect different levels of lesion profiles and disease
states should be tested (all shiverer mice employed were the-
oretically at the same disorder state and genetically equiva-
lent, so that it was impossible to analyze other factors such
as temporal progressions or different white matter lesion af-
fectations). Second, the reproducibility in human data that

present different properties due to image resolution and con-
trast should be further explored.

A remarkable result of this study was the finding that the
combination of the network properties produced by various
fiber-tracking algorithms provided a greater consistency in
the prediction results compared to those obtained using the
network properties produced by only one fiber-tracking algo-
rithm (e.g., a final mean prediction accuracy across all consid-
ered network measures increased in the range 3.58%–13.09%
compared to the single fiber-tracking algorithm-based predic-
tion cases). This finding is related to the fact that the used
fiber-tracking algorithms have been designed differently to
take into account the intrinsic limitations of the DW-MRI
datasets (Lazar et al., 2003; Mori et al., 1999; Weinstein
et al., 1999). As reported by Jing Li and colleagues (2005),
each of these fiber-tracking algorithms presents advantages
and limitations compared to the others, so that it is realistic
to expect a better description of the brain’s structural com-
plexities based on the complementary combination of their
results.

Enriched white matter connectivity networks and
resting-state functional MRI networks for the identification
of patients with mild cognitive impairment

Mild cognitive impairment (MCI) is often a transition
phase between normal state and AD. Although the early

FIG. 3. Three-dimensional brain network measure representation space for (A) clustering, (B) characteristic path length, (C)
modularity, (D) local efficiency, (E) global efficiency, and (F) small-worldness indices. Control and shiverer mice are repre-
sented by the symbols , and D, respectively. For each measure space, the green surface constitutes the mean boundary
plane between groups obtained by means of a linear discriminant analysis cross-validation approach. Note the correct predic-
tions and clear spatial subdivisions between control and shiverer mice for some of the evaluated network measures (a, d, e, and
f), which suggest that specific network subspaces corresponding to normal and abnormal brain states might exist. Axis labels
FACT (Mori et al., 1999), TEND (Lazar et al., 2003), and TL (Weinstein et al., 1999) refer to different fiber tractography algo-
rithms used. Figure adapted with permission from Iturria-Medina et al., 2011b.
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detection of MCI is of critical importance for early diagnosis
and intervention in AD, the apparently irrelevant symptoms
of MCI often make it difficult to diagnose. Wee and col-
leagues (2011) proposed a solution to discriminate MCI sub-
jects from normal controls based on a network-based
multivariate classification algorithm that uses several mea-
sures derived from white matter connectivity networks.
They first created an enriched description version of white
matter connections utilizing six tentative parameters of fiber
physiology, that is, tractographic fiber pathway counts,
mean FA, mean MD, and mean principal diffusivities (k1,
k2, and k3) along each connection trajectory. This resulted
in six individual networks that accounted for the connection
topology and the biophysical properties of patients with MCI
and age-matched controls. Then, a leave-one-out cross-valida-
tion support vector machine (SVM) procedure was used, in
which each subject was finally classified as patient with MCI
or normal control after reducing the initial set of topological
and biophysical features by means of a Pearson correlation-
based feature ranking and an SVM-based feature selection. In
line with previous studies aimed to the identification of re-
gional abnormalities in MCI subjects (Davatzikos et al., 2008;
Davatzikos et al., 2011; Fan et al., 2008; Misra et al., 2009), the
most discriminant regions selected for individual classification
were the rectus gyrus, insula, and precuneus. Classification re-
sults indicated a 88.9% discrimination accuracy between pa-
tients with MCI and normal controls, and an area of 0.929
under the receiver-operating-characteristic (ROC) curve, with
an increase of at least 14.8% from discrimination accuracies
obtained using any single physiological parameter (i.e., tracto-
graphic fiber pathway count, FA, MD, k1, k2, or k3).

Subsequently, the authors improved their own method, in-
corporating for the first time both physiological and func-
tional network measurements simultaneously in the
construction of discrimination tools (Wee et al., 2012). In ad-
dition to the enriched description version of white matter con-
nections, functional brain networks were reconstructed using
resting-state functional MRI data. Pairwise Pearson correla-
tion coefficients between temporal signals of pair of regions
were computed as functional connectivity measures, for five
equally divided frequency sub-bands. A multiple-kernel
SVM was then introduced to integrate features coming both
from anatomical and functional connectional information.
Testing with the same groups of MCI and control subjects,
classification accuracy based on the multimodality approach
increased at least from 7.4% compared to the single modality-
based classification. Thus, the diagnostic power was excellent
with a final 96.3% of discrimination accuracy and an area of
0.953 under the ROC curve. Even when discrimination analy-
ses were performed using a small sample size (i.e., 10 patients
with MCI and 17 age-matched controls), the excellent multi-
modality classification results obtained in this study support
the idea that anatomical and functional brain networks con-
tain complementary information that, when correctly com-
bined, allows for considerable improvements of the
sensibility and specificity of current clinical diagnostic tools.

Disease progression in dementia and network
diffusion propagation models

Like infectious prionopathies, many noninfectious neuro-
degenerative diseases, such as AD and frontotemporal de-

mentia (FTD), are associated with the accumulation of
fibrillar aggregates of proteins [e.g., tau and amyloid-b (Ab)
and a-synuclein; Frost and Diamond, 2010]. Due to the simi-
larity with prion diseases, analogous prion-like disease agent
transmission mechanisms along neuronal pathways have
been proposed to explain the underlying process of noninfec-
tious neurodegenerative diseases (Frost and Diamond, 2010).
Inspired by this hypothesis, Raj and colleagues (2012) re-
cently proposed a landmark approach in which prion-like
transmission progression mechanisms in dementia are math-
ematically expressed by a Network Diffusion Model medi-
ated by the brain’s connectional anatomy.

According to the introduced diffusive spread model (Raj
et al., 2012), the increase over time of the number of diseased
afferents from a region R2 to any region R1 depends upon the
disease concentration factor in both regions and upon the an-
atomical connection strength between them. Moreover, tem-
poral atrophy of a given cortical region is assumed to result
from the accumulation of its diseased concentration factor,
whereas total brain cortical atrophy at any moment in time
can be evaluated as the sum of the atrophy damage over all
individual regions. Importantly, the authors solved the set
of differential equations, guaranteeing the preceding assump-
tions for all pairs of possible gray matter regions, and they
obtained simplified temporal expressions for both local and
global cortical atrophy patterns, which resulted in the linear
combination of eigenmodes of the anatomical brain net-
work’s graph-Laplacian (H) (Table 1). In spite of the relative
complexity of this model compared to more commonly
used graph–theoretical analysis, its evaluation is almost re-
duced to the precomputation of a set of elementary transfor-
mations over the anatomical brain network. This allows
obtaining the graph-Laplacian H, and the subsequent intro-
duction of H’s eigenmodes/eigenvalues in a simple temporal
cortical atrophy expression with a deterministic time-depen-
dent exponential component and a case-dependent random
component, determined by the initial configuration of the dis-
ease. Due to the exponential dependence of the temporal cor-
tical atrophy expression with H’s eigenmodes/eigenvalues,
the eigenmodes with large eigenvalues have a quick decay,
thereby only contributing to the final expression the eigen-
modes with small eigenvalues, subsequently denoted as per-
sistent modes (i.e., the lower the decay rate of a given
persistent mode, the more widespread and severe the associ-
ated cortical damage). Finally and again based on the obser-
vation of the temporal cortical atrophy expression, the
authors hypothesized that H’s persistent modes should be ho-
mologous to known patterns of atrophy in several degenera-
tive dementias. By contrast, the corresponding eigenvalues
should reflect the associated population-wide prevalence
rates.

To explore the performance of the model with real data,
whole-brain anatomical networks were reconstructed for 14
healthy young subjects using HARDI datasets and the 90 cor-
tical and subcortical structures of the AAL gray matter parcel-
lation scheme (Mazziotta et al., 1995). For each of these
subjects, intravoxel fiber orientation distribution functions
were estimated using the qball reconstruction approach
(Tuch, 2002b; Tuch, 2004). Region–region axonal connectivity
values were estimated via a probabilistic fiber tractography
algorithm (Behrens et al., 2007), and final individual network
extraction was based on previously described methodologies
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(Iturria-Medina et al., 2008; Raj and Chen, 2011). In addition,
T1-weighed MR scans of 18 AD subjects, 18 subjects with
the frontal behavioral variant of FTD (bvFTD), and 19 age-
matched controls were used to estimate mean cortical atro-
phy for each diseased group and AAL region (i.e., cortical
atrophy for a given region was measured as the normalized
deviation of the mean group volume compared to the mean
volume of the age-matched control group).

Consistent with the theoretical predictions, Raj et al. (2012)
found that the second and third eigenmodes of H (i.e., the
graph-Laplacian of the mean anatomical network of the
healthy young subjects) were in visual correspondence and
significantly correlated with the atrophy patterns observed
in the AD and bvFTD groups. The fourth eigenmode showed
atrophy patterns common to Huntington’s disease (HD) and
to other corticobasal pathological process occurring less fre-
quently. Also, the inverse value of the second, third, and
fourth eigenvalues strongly reflected previous population
prevalence rates published for AD, bvFTD, and HD, respec-
tively (see Fig. 4a). Figure 4b shows the match between the
published relative prevalence of AD and bvFTD as a function
of age and the prevalence curves predicted by the theoretical
model.

Although the Network Diffusion Model proposed by
Raj et al. (2012) requires further validation (e.g., the use
of longitudinal data to test prediction accuracy on cortical
atrophy changes over time), it represents a novel and
promising approach with several clinical and diagnostic
potential applications, such as differential diagnosis and
prediction of individual cognitive declines based on the
estimation of future cortical atrophy patterns using base-
line MRI datasets.

Current Limitations and Future Directions

How realistic are the reconstructed
anatomical brain networks?

Any brain graph-based network representation requires two
crucial steps: node definition and characterization of the arcs
linking the nodes. Considering node definition, there is a general
consensus that commonly used gray matter parcellation
schemes to define nodes (e.g., Brodmann, 1909; Mazziotta
et al., 1995) respond in different and incomplete ways to the re-
quirements of an ideal parcellation (i.e., a fine-scale representa-
tion of common anatomical and functional architectures; see
Toga et al., 2006). The decision to use a particular gray matter
parcellation scheme implies the outcome of network properties
and, subsequently, of prediction results that could change con-
siderably with the selection of any other parcellation alternative
(Zalesky et al., 2010a). While some authors present their analysis
using different parcellation schemes as an option to explore par-
cellation effects (Hagmann et al., 2007; Hagmann et al., 2008;
Iturria-Medina et al., 2011a; Li et al., 2009; Raj et al., 2012), recent
automatic parcellation approaches propose to use detailed infor-
mation contained in functional and/or structural profiles (Beh-
rens et al., 2003b; Behrens et al., 2004; Jbabdi et al., 2009; Li et al.,
2010; Tuch, 2002b; Zhang et al., 2011; Zhu et al., 2011a; Zhu
et al., 2011b; Zhu et al., 2012). For instance, recent work by
Zhu et al. (2012) found 358 cortical landmarks that were consis-
tent and reproducible across 143 brains, based on DW-MRI fiber
tractography profiles. In comparison with traditionally used
gray matter parcellation schemes (e.g., Brodmann, 1909; Maz-
ziotta et al., 1995), the use of automatic parcellation methods
based on structural/functional connectivity patterns may offer
finer granularity, better functional homogeneity, and more

FIG. 4. Prevalence rate of various dementias as percentage of all dementias. (A) Published prevalence versus predicted prev-
alence by the network diffusion model [predicted values for Alzheimer’s disease (AD), behavioral variant of frontotemporal
dementia (bvFTD) and huntington’s disease correspond to the inverse of H’s second, third and fourth eigenvalues, respective-
ly]. The numbers indicate the publication from which the reference data point was extracted. Note the linear relation between
reported prevalence and predicted values, corresponding to a significant regression with an explained variance of 88%. (B)
Published and predicted relative prevalence of AD versus bvFTD as a function of age. Solid curves pertain to parameter-op-
timized model prediction. Note that, on (A), in spite of the high explained variance obtained, the predicted prevalence for AD
is around the mean value of considerably different published prevalence rates (reference data points 1, 2, 4, and 5), which is
related to the fact that published prevalence rates for AD vary considerably across sources, ethnicity, and particularly across
age groups. However, when considered the relative prevalence rates for AD as a function of age, (B), the published prevalence
values are hopefully closely positioned to the predicted curve, especially in later stages of life for which are reported more re-
liable prevalence data. Figure adapted with permission from Raj et al., 2012.
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accurate functional localization (Zhu et al., 2012). This has po-
tentially strong implications for the realistic reconstruction and
across- subjects’ matching of anatomical brain networks.

Considering arcs linking nodes, their characterization is
typically based on the empirical information about estimated
fiber trajectories connecting the regions of interest. As a conse-
quence of using indirect measures of a connective anatomical
architecture, based on water molecule’s restricted diffusion
processes and not on real axon routes, DW-MRI fiber tractog-
raphy techniques still require a major improvement for data
acquisition and for associated reconstruction algorithms (see
Jbabdi and Johansen-Berg, 2011). More relevant limitations in-
clude the complexity to deal with fiber crossing, merging, and
fanning configurations. Different and original solutions are
often proposed to these problems (Canales-Rodrı́guez et al.,
2009; Canales-Rodrı́guez et al., 2010a; Canales-Rodrı́guez
et al., 2010b; Dell’Acqua et al., 2007; Özarslan et al., 2006;
Savadjiev et al., 2006; Savadjiev et al., 2008; Sotiropoulos
et al., 2012; Tournier et al., 2004; Tournier et al., 2007; Tuch,
2004; Wedeen et al., 2005). Additionally, the impossibility to
discriminate between afferent and efferent connections and
the not less-important issue of defining interpretable and ac-
curate fiber pathway integrity measures are major problems
( Jones et al., 2012). The recent introduction of microstructure
indices such as axonal diameter and density distributions
(Alexander et al., 2010; Assaf et al., 2008) or neurite orientation
dispersion and density distributions (Zhang et al., 2012) can
play a fundamental role in solving these issues. Unfortu-
nately, it is currently impossible to know if an estimated
fiber trajectory corresponds to a real anatomical connection
route or not. Even if some approaches aimed at testing the sta-
tistical relevance of specific connections (Gigandet et al., 2008;
Hinne et al., 2012; Jbabdi et al., 2007; Morris et al., 2008; Raj
and Chen, 2011), determining the nonexistence of real connec-
tions continues to be a key unsolved problem that needs fur-
ther attention. When considering past and present brain
anatomical network studies and their methodological limita-
tions, it is important to keep in mind that brain networks cre-
ated using DW-MRI datasets and associated reconstruction
techniques are still imperfect representations of the real
brain connective neuroanatomy. Consequently, the neurosci-
ence community expecting to work with them should see
these only as initial attempts to overcome a major challenge.

At first view, the limited realism of current anatomical
brain network construction methodologies seems to stand
in contradiction with the optimistic predictive results
reviewed in the last section. In our opinion, however, al-
though current parcellation schemes and fiber tractography
algorithms require improvement, the reconstructed networks
can still be of great value to summarize local and global indi-
vidual anatomical profiles and to reflect brain structural
(in)alterations. In other words, even if the estimated networks
are the consequence of only partially correct brain anatomy
representations, the outcome results support the idea that ap-
propriate analysis of their intrinsic information can contribute
to detect and predict abnormal brain states.

Which prediction models and discrimination
algorithms should be used?

Brain diseases do not follow identical routes across sub-
jects, with the possible exception of animal models created

with a genetic protocol and placed in identical environmental
conditions. Although a carefully selected group of individu-
als can have very similar clinical symptoms caused by a spe-
cific brain abnormality, the time course of structural and
functional impairments on each individual can differ depend-
ing upon several factors, such as genetic predispositions (see
Fornito and Bullmore, 2012), environmental conditions, and
lifestyle. Increased pathologic heterogeneity within patients
adds to potential mismatches on individual progression
states. It is therefore difficult to acquire large amounts of
data and to create associated statistical models that accurately
predict specific abnormal brain states.

Intuitively, any ideal abnormal brain-state predictor based
on anatomical profiles should be capable of offering quantita-
tive individualized information about (natural or induced)
structural alterations. More importantly, the proximity/dis-
tance between these modifications and specific abnormal
states associated with known adverse clinical symptoms
should be specified. In this sense, traditional discrimination
between healthy and nonhealthy classes can be of consider-
able help, but it would only be an insufficient achievement
if it does not offer individual information about the proximity
to intermediate or future states. In the study discriminating
shiverer mutants (Iturria-Medina et al., 2011b), each individ-
ual final classification was based on the conditional probabil-
ity of being a healthy control subject, which can be interpreted
as a continuous anatomical index of structural (in)alterations
in a given range. Similarly, the spectral clustering representa-
tion of communicability networks in patients with stroke
(Crofts et al., 2009, 2011) could allow quantifying the individ-
ual distance from healthy baseline, something with a possible
outcome on the quantitative evaluation of individual damage
states. By contrast, different disease progression models have
been recently proposed (Fonteijn et al., 2012; Raj et al., 2012;
Zhou et al., 2012), in which each individual state is considered
as a progressive/temporal variable in the prediction model.
These approaches may offer a more straightforward choice
to evaluate brain alterations on a continuous scale.

It is important, however, to note that the individual indices
obtained from discrimination/clustering analyses as well as
the predictors based on disease progression models still re-
quire deeper validations and the necessary comparison with
pre-existing biomarkers (e.g., McDonald et al., 2001). In addi-
tion, exploring the transition from one specific abnormal state
to another (e.g., the analysis of different brain diseases) re-
quires tentatively different prediction models. A deep analy-
sis of the underlying biophysical mechanisms that provoke a
specific disease is of great importance for the selection of the
correct prediction model. In this sense, for example, the pro-
posed network diffusion model of prion-like disease progres-
sion (Raj et al., 2012) can possibly be inappropriate for the
analysis of the white matter dysmyelination/demyelination
process. In this example case, the prediction based on fiber in-
tegrity measures (Iturria-Medina et al., 2011b; Wee et al.,
2011, 2012) or network communicability measures (Crofts
et al. 2009, 2011) may be more appropriate alternatives.

Conclusions

An important aspect of clinical diagnostic investigation is
the anatomic discrimination between normal and pathologi-
cal states. Similarly, neurodevelopment evaluations require
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the precise analysis of individual anatomical properties and
their relationship with behavioral data. Accumulated evi-
dence supports the view that anatomical brain networks con-
tain invaluable information for predicting abnormal brain
states in which the complex neuronal interconnection system
supported by the white matter is modified. Current advances
should be considered with care, however, especially in pursu-
ing the creation and establishment of biomarkers. The next
mandatory issue will be the improvement of brain connec-
tional anatomy descriptions, including brain parcellation
schemes, diffusion MRI data acquisition, intravoxel anisot-
ropy characterization, and associated fiber tractography
methods. It will be crucial to consolidate the sensibility and
specificity of predictive models, guaranteeing high prediction
accuracy for multiple white matter abnormalities (e.g., brain
diseases or neurodevelopmental disorders of cognition) in
humans and across different species.
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toria Natural. Segunda serie, tomo I, diciembre.

Canales-Rodrı́guez EJ, Iturria-Medina Y, Alemán-Gómez Y,
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Erd}os P, Rényi A. 1960. On the evolution of random graphs. Pub-
lications of the Mathematical Institute of the Hungarian Acad-
emy of Sciences 5:17–61. www.renyi.hu/~p_erdos/1961-15.pdf

Estrada E, Hatano N. 2008. Communicability in complex net-
works. Phys Rev E 77:036111.

Fabene PF, Bentivoglio M. 1998. 1898–1998: Camillo Golgi and
‘‘the Golgi’’: one hundred years of terminological clones.
Brain Res Bull 47:195–198.

Fan Y, Batmanghelich N, Clark CM, Davatzikos C, the Alz-
heimer’s Disease Neuroimaging Initiative. 2008. Spatial pat-
terns of brain atrophy in MCI patients, identified via high-
dimensional pattern classification, predict subsequent cogni-
tive decline. Neuroimage 39:1731–1743.

Felleman DJ, van Essen DC. 1991. Distributed hierarchical pro-
cessing in the primate cerebral cortex. Cereb Cortex 1:1–47.

Ferrarini L, et al. 2008. Hierarchical functional modularity in
the resting-state human brain. Hum Brain Mapp 30:2220–
2223.

Filippi M, Agosta F. 2010. Imaging biomarkers in multiple sclero-
sis. J Magn Reson Imaging 31:770–788.

Fonteijn HM, Modat M, Clarkson MJ, Barnes J, Lehmann M,
Hobbs NZ, Scahill RI, Tabrizi SJ, Ourselin S, Fox NC,
Alexander DC. 2012. An event-based model for disease pro-
gression and its application in familial Alzheimer’s disease
and Huntington’s disease. Neuroimage 60, 1880–1889.

Fornito A, Bullmore ET. 2012. Connectomic intermediate pheno-
types for psychiatric disorders. Front Psychiatry 3:32.

Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I,
Yucel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry
BJ, Pantelis C, Bullmore ET. 2011. Genetic influences on
cost-efficient organization of human cortical functional net-
works. J Neurosci 31:3261–3270.

Frost B, Diamond MI. 2010. Prion-like mechanisms in neurode-
generative diseases. Nat Rev Neurosci 11:155–159.

Gilbert EN. 1959. Random graphs. Ann Math Stat 30:1141–1144.
Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC.

2009. Age- and gender-related differences in the cortical ana-
tomical network. J Neurosci 29:15684–15693.

Gudden B von. 1870. Experimental untersuchungen über das
peripherische und centrale Nervensystem. Archiv für Psy-
chiatrie und Nervenkrankheiten, Berlin, 2: 693–723.

Guye M, Bettus G, Bartolomei F, Cozzone PJ. 2010. Graph theo-
retical analysis of structural and functional connectivity MRI

BRAIN NETWORKS ON THE PREDICTION OF ABNORMAL BRAIN STATES 17



in normal and pathological brain networks. MAGMA 23:409–
421.

Hagmann P. 2005. From diffusion MRI to brain connectomics.
PhD Thesis, in Signal Processing Institute, Lausanne: Ecole
Polytechnique Fédérale de Lausanne (EPFL), p. 127.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ,
Wedeen VJ, Sporns O. 2008. Mapping the structural core of
human cerebral cortex. PLoS Biol 6:e159.

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli
R, Thiran JP. 2007. Mapping human whole-brain structural
networks with diffusion MRI. PLoS ONE 2:e597.

Harvey RJ. 2003. The prevalence and causes of dementia in peo-
ple under the age of 65 years. J Neurol Neurosurg Psychiatry
74:1206–1209.

Higham DJ, Kalna G, Kibble M. 2007. Spectral clustering and its
use in bioinformatics. J Comput Appl Math 204:25–37.

Hilgetag CC, Burns GA, O’Neill MA, Scannell JW, Young MP.
2000. Anatomical connectivity defines the organization of
clusters of cortical areas in the macaque monkey and the
cat. Phil Trans R Soc B 355:91–110.

Hilgetag CC, Kaiser M. 2007. Organization and function of
complex cortical networks. In: beim Graben P, Zhou C,
Thiel M, Kurths J (eds.) Super-Computational Neuroscience:
Complex Networks in Brain Dynamics. Lecture Notes in
Physics, Berlin: Springer.

Hinne M, Heskes T, Beckmann CF, van Gerven MAJ. 2012.
Bayesian inference of structural brain networks. Neuroimage
66C:543–552.

Irimia A, Chambers MC, Torgerson CM, Van Horn JD. 2012. Cir-
cular representation of human cortical networks for subject
and population-level connectomic visualization. NeuroImage
60:1340–1351.

Iturria-Medina Y. 2004. From diffusion images to the anatomical
brain connectivity. Diploma Thesis, at Superior Institute for
Applied Nuclear Technologies and Sciences, Cuba.
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Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, et al. 2000.
Current concepts in neuroanatomical tracing. Prog Neurobiol
62:327–351.

Kondor RI, Lafferty J. Diffusion Kernels on Graphs and Other
Discrete Structures. In Proceedings of the 19th International
Conference on Machine Learning, Sydney, Australia 2002,
pp. 315–322.

Kötter R, Sommer F. 2000. Global relationship between anatom-
ical connectivity and activity propagation in the cerebral cor-
tex. Philos Trans R Soc B 355:127–134.

Kötter R, Stephan KE. 2003. Network participation indices: char-
acterizing component roles for information processing in neu-
ral networks. Neural Netw 16: 1261–1275.

Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schel-
lenberg GD, van Belle G, Jolley L, Larson EB. 2002. Dementia
and Alzheimer disease incidence: a prospective cohort study.
Arch Neurol 59:1737–1746.

Landman BS, Russo RL. 1971. On a pin versus block relationship
for partitions of logic graphs. IEEE Trans on Comput C-
20:1469–1479.

Latora V, Marchiori M. 2001. Efficient behavior of small-world
networks. Phys Rev Lett 87:198701.

Laughlin SB, Sejnowski TJ. 2003. Communication in neuronal
networks. Science 301:1870–1874.

Lazar M, Weinstein DM, Tsuruda JS, Hasan KM, Arfanakis K,
et al. 2003. White matter tractography using diffusion tensor
deflection. Hum Brain Mapp 18:306–321.

Le Bihan D, Breton E. 1985. Imagerie de diffusion in vivo par réso-
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