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Increased brain connectivity, in all its variants, is often considered an evolutionary
advantage by mediating complex sensorimotor function and higher cognitive faculties.
Interaction among components at all spatial scales, including genes, proteins, neurons,
local neuronal circuits and macroscopic brain regions, are indispensable for such
vital functions. However, a growing body of evidence suggests that, from the
microscopic to the macroscopic levels, such connections might also be a conduit
for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP)
transmission and neuronal toxicity are prominent connectivity-mediated factors in aging
and neurodegeneration. This article offers an overview of connectivity dysfunctions
associated with neurodegeneration, with a specific focus on how these may be central
to both normal aging and the neuropathologic degenerative progression.
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Introduction

Intra-brain connectivity is indispensable for the attainment and maintenance of animal life.
Genes, proteins, neurons, cell assemblies and gross brain regions all interact constantly to
orchestrate the brain functions that underly sensorimotor and cognitive processing. Homeostatic
mechanisms establish a basal level of functional organization upon which subtle variations are
overlaid that subserve the changes in mood, attention, performance and response to external
stimuli that we discern at the behavioral level. However, this delicate equilibrium may break
down, particularly in the presence of neurological and psychiatric disorders where aberrant
pathologic factors provoke massive alterations in connectivity at all brain levels (Konrad and
Eickhoff, 2010; Bicchi et al., 2013; Iturria-Medina, 2013; Reynolds and Stewart, 2013; Gomez-
Ramirez and Wu, 2014; He and Evans, 2014; Pievani et al., 2014). Recent advances in brain
mapping tools, including genetics, electrophysiology and imaging techniques, with the support
of new bioinformatic analysis, have extended to unprecedented levels our understanding of
segregation and integration processes in the normal brain (Stam and van Dijk, 2002; Bota et al.,
2003; Hagmann et al., 2007; Iturria-Medina et al., 2007; Karlebach and Shamir, 2008; Axer
et al., 2011; Friston, 2011; Sporns, 2011; Evans, 2013). Additionally, they have revealed the
connectional alterations associated with a wide range of psychiatric and neurological disorders
(Buckholtz and Meyer-Lindenberg, 2012; Meyer-Lindenberg and Tost, 2012). Both brain
disconnections and hyperconnections are commonly observed for different neurodegenerative
diseases (for detailed review see Pievani et al., 2014). How disconnections and hyperconnections
arise and coexist during disease progression is still not well understood. Often, disconnections
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are considered a direct consequence of neurodegeneration,
while hyperconnections are assumed to reflect compensatory
mechanisms or spatiotemporal correlation in pathology. But
such views may be a simplistic interpretation of more complex
phenomena, in which brain connectivity could be playing a more
causal role. In this article, we provide a brief overview of the
biological mechanisms implicated in connectional dysfunctions
and consequent neurodegeneration. The article is organized
in four primary subsections. The first offers a brief overview
of gene regulatory network alterations and their role in
neurodegeneration. The second reviews the demonstrated role
of the brain’s structural architecture on prion-like propagation,
as a main factor mediating neurodegenerative progression.
The third presents and discusses the evidence supporting the
neuronal activity dependent neurodegeneration hypothesis, in
which functional connectivity presents an active role. The
fourth integrates previous and recent findings, emphasizing
the role of multimodal connections on disease spreading and
progression. Finally, we highlight some outstanding questions
and the challenges in building an operational model of dynamic
brain organization that can account for both normal brain aging
and neurodegenerative disease.

Alterations in Normal Brain Connectivity
and Neurodegeneration

Deregulated Gene and Protein Networks
Gene regulatory networks control the expression levels of
mRNA and proteins. Normal cellular activity depends upon
the proper functioning of these networks. This makes the
analysis of regulatory network dynamics a crucial step towards
understanding the biological processes of health and disease (for
reviews, see Bota et al., 2003; Karlebach and Shamir, 2008; Bernot
et al., 2013). Aging and neurodegeneration are thought to have
strong upstream genetic causes. For instance, Apoeε4 and BCHE
genes are considered important risk factors for the development
of Alzheimer’s disease (AD; Genin et al., 2011; Cramer et al.,
2012; Ramanan et al., 2014). Meanwhile, increasing evidence
supports the important modulatory impact of many other AD-
related genes (Lambert et al., 2013). Similarly, amyotrophic
lateral sclerosis (ALS) is associated with different genetic risk
factors, e.g., TDP-43 and SOD, which act in combination with
aging and environmental conditions (for reviews see Al-Chalabi
and Hardiman, 2013; Robberecht and Philips, 2013). Such multi-
factorial causes during the neuropathologic progression are
common for the most prevalent neurodegenerative diseases of
AD, ALS, Frontotemporal dementia (FTD), Parkinson’s disease
(PD) and Huntington’s disease (HD). It strongly supports that
‘‘aberrant’’ genes do not act alone on pathologic progression
but by their interaction with other collaborator genes under
the influence of environmental/experience conditions (e.g.,
life style, epigenetic effects). Nutrition conditions have an
important modulatory role on gene activities and aging disorders
(Joseph et al., 2009; Bouchard-Mercier et al., 2013; Nicolia
et al., 2014). For instance, caloric restriction and diet rich
in anti-inflammatory and antioxidant properties have been
found associated to increased longevity and preserved cognitive

functioning (Roth et al., 2002; Colman et al., 2009; Joseph
et al., 2009; Stice et al., 2013; Crichton et al., 2013; Sezgin
and Dincer, 2014). Nutri-epigenomics science focus on the
influence of nutrition on epigenetic modifications and its
consequences on health (Gallou-Kabani et al., 2007), which
ideally should contribute to develop effective nutrition-based
therapeutic interventions. Modern gene expression profiling
techniques allow us to quantify gene-specific activity across
different tissues and time points (O’Driscoll, 2011). As a result,
genetic interaction occurring between regions of interest can be
characterized by means of sophisticated statistical concepts and
tools (Bota et al., 2003; Karlebach and Shamir, 2008; Bernot
et al., 2013), thereby contributing to our understanding of how
regulatory networks are involved in disease progression (Crespo
et al., 2012; Narayanan et al., 2014; Leiserson et al., 2015). In
the context of brain degeneration, Zhang et al., 2013, reported a
remarkable example of causal gene-gene pathologic interaction.
These authors used gene expression profiles of the prefrontal
cortex to identify regulatory networks causally associated with
late onset AD. They identified an immune and microglia-
specific gene module that is strongly regulated by the gene
TYROBP, directly associated to Amyloid-β (Aβ) turnover and
neuronal damage. This TYROBP causal network (Figure 1A),
characterized in detail by means of Bayesian network analysis,
showed a direct modulatory effect on late onset AD gene
networks, which was verified not only in human brain but
also in an experimental animal model. A salient finding was
that the differential gene expression observed for late onset
AD presented a distance-dependent relationship with TYROBP
(Figure 1B). Those genes with a higher functional association
with TYROBP are more likely to be altered during the disease
process, as well as to propagate the pathologic effects to their
connected neighbors. Although this characteristic gene network
regulatory effect (Zhang et al., 2013) needs further exploration
and validation in other neurodegenerative diseases, it illustrates
how connectional links at the molecular level canmediate disease
propagation.

Inter-Cellular Misfolded Proteins Propagation
Across Structural Pathways
Proteins that fail to configure properly are called misfolded
proteins (MP). Historically, they have been causally associated
with aging and several human neurodegenerative diseases (Braak
and Braak, 1991; Dobson, 2002, 2003; Braak et al., 2004). The
prion-like hypothesis proposes that cell-to-cell transmission of
toxic MP is a principal cause of neurodegeneration (Frost et al.,
2009; Brundin et al., 2010; Hallbeck et al., 2013). Increasing
neuropathologic evidence supports the spread of MPs from
initial host regions to anatomically connected areas, spreading
and simultaneously re-seeding the toxic effects (Frost et al.,
2009; Waters, 2010; Nath et al., 2012; Jucker and Walker, 2013;
Song et al., 2014). This fact, combined with recent evidence
supporting the notion that each neurodegenerative disorder
is associated with a characteristic group of MPs (Brundin
et al., 2010), motivated in part the network degeneration
hypothesis (NDH; Seeley et al., 2009). This hypothesis proposes
that each disorder should present disease-specific anatomic,
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FIGURE 1 | Connectivity distances to pathologic epicenters
predict diseases effects. (A) TYROBP causal network in late
onset Alzheimer’s disease (AD), (B) differential expression levels of
deregulated genes associated with TYROBP at various functional

distances from it. Note the negative association (R = −0.82;
P < 10−3) implying increasing impact with proximity to TYROBP.
Figure adapted from Zhang et al. (2013), with permission from
Elsevier.

FIGURE 2 | Anatomically dissociable networks targeted by five
different neurodegenerative disorders: AD, behavioral variant
frontotemporal dementia (bvFTD), semantic dementia (SD),

progressive nonfluent aphasia (PNFA), and corticobasal
syndrome (CBS). Figure adapted from Seeley et al. (2009), with
permission from Elsevier.

functional and metabolic pathways. Seeley and colleagues used
MRI to demonstrate that different neurodegenerative disorders
are associated with spatially dissociable atrophy patterns, each
pattern corresponding to a consistent structural covariance
and functional sub-network (Figure 2; Seeley et al., 2009). In
a complementary study (Zhou et al., 2012), the same group
showed that regions with higher connectivity with, and shorter
functional distances to, disease-specific epicenters presented

greater structural atrophy. Raj et al., 2012, introduced a diffusion
network model of intra-brain MP propagation, according to
which the increase over time of the number of diseased
afferents from a given brain region to any other region depends
upon the disease concentration factor in both regions and
upon the anatomical connection strength between them (Raj
et al., 2012). From this model, an analytical expression for
structural atrophy dynamics was obtained. After a mathematical
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decomposition of a healthy brain anatomical connectome, the
authors found a significant correspondence between specific
dissociable connectivity modules and the characteristic atrophy
patterns of different neurodegenerative diseases (AD, behavioral
variant FTD [bvFTD]). Each connectivity module’s weight
in the initial connectome was inversely proportional to the
population prevalence of a specific disorder (AD, bvFTD or
HD). This suggested that the final structural atrophy pattern in
adulthood could be the weighted combination of characteristic
atrophy patterns from prevalent neurodegenerative diseases, in
which each disease-characteristic pattern is weighted by the
individual predisposition to express such disease. In general,
these three seminal studies (Seeley et al., 2009; Raj et al.,
2012; Zhou et al., 2012) supported the NDH, as well as
the structural and functional connectivity-mediated spread
of neuropathologic effects. However, neurodegenerative gray
matter atrophy patterns may not be uniquely provoked by MP
toxicity. Other pathologic factors, such as neuronal activity
toxicity, and metabolic and vascular deregulations (see below)
may contribute to cell death.

In order to obtain straight evidence of MP spread as a
function of anatomical proximity to a disease propagation

epicenter, Iturria-Medina et al. (2014), analyzed PET Aβ

deposition patterns in 733 healthy and diseased brains.Motivated
by the remarkable similarity between intra-brain pathology
propagation and the spread of human infectious diseases in
social networks, we hypothesized that MP dynamics can be
mathematically described and characterized by the epidemic-like
interactions between infection agents (the aberrant proteins) and
the brain’s defense response, mediated by the brain’s anatomical
architecture (Iturria-Medina et al., 2014). The proposed epidemic
spreading model (ESM) reproduced Aβ patterns from healthy
to advanced diseases states, allowing the reconstruction of
individual lifetime histories of intra-brain Aβ propagation, and
the subsequent analysis of the biological factors that promote
such propagation/deposition (e.g., the relationship of clinical
state with MP production and/or clearance). When exploring
the relation between regional Aβ deposition pattern and the
connectional proximity to the Aβ outbreak regions, as identified
by the ESM (anterior and posterior cingulate cortices), a
significant negative linear trend was observed (Figure 3A),
with more advanced disease states corresponding to higher
deposition. Also, a significant negative relation between regional
anatomical connectivity degree and Aβ arrival time (measures

FIGURE 3 | In brain and social networks, effective proximity to an
epicenter modulates the propagation of aberrant factors. (A) PET-based
regional Aβ deposition probabilities for different clinical groups (healthy control
(HC), early mild cognitive impairment (EMCI), late mild cognitive impairment
(LMCI) and AD) vs. effective anatomical distances to the identified Aβ outbreak
region (anterior and posterior cingulate cortices). (B) Regional Aβ arriving times

vs. effective anatomical distances, for different Aβ probability thresholds (i.e.,
0.1, 0.5 and 0.9). (C) N1H1 pandemic arrival time vs. effective distance (Deff ) to
outbreak country (i.e., Mexico). In (C), the effective distance was computed
from the projected global mobility network between countries. Panels (A,B) and
(C) were adapted with permission from Iturria-Medina et al. (2014), and
Brockmann and Helbing (2013) respectively.
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of hubness and disease vulnerability) was observed (Figure 3B).
This relation was independent of the selection of different Aβ

deposition thresholds, indicating that regions with a higher
degree of anatomical connectivity experience earlier Aβ arrival
and, consequently, larger periods of exposure to the toxic effect of
the aberrant protein. Interestingly, and supporting the hypothesis
of an epidemic spreading behavior for MP propagation, a similar
linear predictive relationship has been reported for effective
distance in human social networks and disease arrival times for
real epidemic propagation of infectious disease (Brockmann and
Helbing, 2013) (e.g., 2009 H1N1 pandemic; see Figure 3C).

Also in line with the prion-like hypothesis, the
phosphorylated 43 kDa TAR DNA-binding protein (pTDP-
43) has been identified as a major neuropathologic factor in
ALS and frontotemporal lobar degeneration (Neumann et al.,
2006; Geser et al., 2009). Recently, Brettschneider et al. (2013),
identified four characteristic stages of pTDP-43 neuropathology
in ALS, which suggested a sequential pTDP-43 intra-brain
dissemination pattern (Brettschneider et al., 2013). Schmidt et al.
(2015), found a dense level of anatomical connectivity between
the regions of these four pTDP-43 stages. These authors also
used a computational random walker spread model to simulate
axonal spread of the pTDP-43 factor as a walking particle along
the white matter pathways (Schmidt et al., 2015). Consistent
with the hypothesis that pTDP-43 pathology is propagated along
axonal pathways, they observed a significant overlap between
the simulated pTDP-43 patterns and the sequential distribution
found previously in ALS autopsy cases.

Neuronal Activity-Dependent Neurodegeneration
The upstream causal role of MP on neurodegenerative disorders
is currently under scientific controversy (Soto and Castilla,
2004; Hilker et al., 2011). MP presence do not always correlate
well with structural atrophy and/or cognitive decline levels,
whereas therapeutic drugs created to reduce MP levels have
demonstrated poor modulatory effects on disease progression
(Holmes et al., 2008). Different alternative hypotheses have been
proposed in order to fit the inconsistencies of the MP prion-
like assumptions. For example, the Caspase-6 neurodegeneration
hypothesis of AD (LeBlanc et al., 1999; Albrecht et al.,
2007; LeBlanc, 2013), explains cell inflammation and death
by the stress-associated action of the Caspase-6 enzyme.
Caspase-6 activation modulates also Aβ and phosphorylated tau
concentrations, which are strongly associated to the stress in
neurons and cell lines. Moreover, consistent evidence suggests
that abnormal neuronal and synaptic activity may modulate
brain MP levels (Kamenetz et al., 2003; Cirrito et al., 2005,
2008; Buckner et al., 2009; Bero et al., 2011). For instance,
exogenous increases in neuronal and synaptic activity in the
hippocampus, induced by electric stimulation, increase the
extracellular Aβ concentrations in that region (Cirrito et al.,
2005). Also, endogenous neuronal activity changes have an
equivalent impact on Aβ concentrations (Bero et al., 2011),
suggesting that regional differences in basal neuronal activity
levels could explain regional vulnerabilities to Aβ presence
and toxicity. From these facts arise some relevant questions:
can aberrant neuronal/synaptic activity have an upstream

role in neurodegenerative progression, and, importantly, is
functional connectivity a mediator of neuronal/synaptic toxicity
spreading? Motivated by these questions, de Haan et al.
(2012), used neural mass modeling to explore local neuronal
activity in relation to large-scale connectivity in normal and
abnormal conditions. For this, the authors simulated neural
dynamics using a real structural brain connectome, and induced
progressive damage to the regions based on their level of
activity. The results suggested that, in no-task conditions, hubs
should be the most active regions (due to the convergence
of heteromodal activity), and also that excessive connectivity-
dependent neuronal activity can have a significant role in the
neurodegenerative progression, thus explaining the associated
hub vulnerability (de Haan et al., 2012). Previously, a robust
relationship between regional hubness (in terms of functional
connectivity) and Aβ depositions had been reported (Buckner
et al., 2009), whereas functional hyperconnectivity, mainly
between cingulate and medio-temporal regions, had been
associated with semantic memory deficits (Gardini et al., 2015).
Similarly, in AD, regional metabolic alterations had been
found to follow Aβ presence in many brain regions (Förster
et al., 2012), whereas the spatial mismatch between these
two pathologic components can be explained by functional
connection to Aβ binding areas (Klupp et al., 2014). This means
that non-Aβ areas can also be metabolically deregulated during
disease progression if those areas are functionally linked to
Aβ and/or functionally-impaired zones. Moreover, derangement
of metabolic connectivity patterns have been associated with
elevated Aβ burden (Carbonell et al., 2014a,b), while a significant
modulatory impact of the Apoeε4 genotype on hypometabolism
had been observed (Jagust and Landau, 2012; Carbonell et al.,
2014a). All together, these results support the contention that
neuronal/synaptic toxicity spreading in neurodegeneration, and
associated activity-dependent deregulation of local MP and
metabolic levels, strongly depend on anatomic, functional and
metabolic brain connectional patterns.

Towards a Multi-Factorial Disease Spreading
Perspective
Although generally associated with specific hypotheses,
previously proposed pathologic mechanisms are not unrelated.
In addition to have a modulatory impact on protein expression,
gene activity is markedly associated with structural connectivity
patterns (French and Pavlidis, 2011; Wolf et al., 2011a; Ji et al.,
2014; Fakhry and Ji, 2015) and synaptic density dynamics
(Goyal and Raichle, 2013). This suggests that alterations
in gene regulatory networks or aberrant signal spreading
across them may induce important changes in structural,
functional and metabolic brain patterns, even as an additional
downstream effect of a main genetic pathologic factor.
Similarly, strong associations persist among different forms
of brain connectivity, under normal or abnormal conditions.
The vascular and metabolic/functional systems represent a
remarkable example. Among other relevant functions, the
vascular system supplies oxygen, glucose and other nutrients,
and clears away deoxygenated blood and metabolic products
(Scremin, 2012). These functions are essential to satisfy daily
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FIGURE 4 | Age-dependent blood-brain barrier (BBB) permeability
breakdown may be causally associated with neurodegenerative
spreading (Panels (A) and (B) were adapted from Montagne et al.
(2015), Iadecola (2015), respectively, with permission from Elsevier).
(A) Significant increases in BBB permeability in older compared young
group of individuals with no cognitive impairment (NCI), and MCI
compared to older NCI group in the entire hippocampus. Multiple
sclerosis (MS) patients with no cognitive impairment were comparable

with the age-matched young NCI group (Montagne et al., 2015).
(B) Hypothetical pathologic mechanisms by which Aβ may induce BBB
permeability alterations and hippocampal/cognitive dysfunction (Iadecola,
2015). Aβ affects endothelial cells, damaging pericytes, vesicular transport
and Ca+ balance. This contributes to BBB disruption, homeostasis
alterations, reduction on misfolded proteins (MP) clearance and tentatively
to hippocampal dysfunction, cognitive deficits and intra-brain pathology
spreading.

neuronal/glial energy and maintenance demands. However,
this close association dates from initial neurodevelopmental
processes: axon-guidance cues mediate the navigation of blood
vessels along predestined tracks during development (Carmeliet
and Tessier-Lavigne, 2005; Zacchigna et al., 2008), whereas
angiogenic vascular endothelial growth factor regulates the
migration of various neuron types to their final destination
(Schwarz et al., 2004; Zacchigna et al., 2008). Recently, Lacoste
et al. (2014), combined genetics, imaging and computational
tools to verify that neural activity changes can modulate
vascular networks. They found that decrease or enhancement
of neural activity (by deafferentation, (de)stimulation or genetic
impairment of neurotransmitter release) leads to equivalent
effects in vascular density and branching (Lacoste et al., 2014).
Together, these facts explain the anatomical positioning and
behavioral similarities that have also been uncovered among the
vascular and the functional/metabolic pathways (Melie-García
et al., 2013; Jann et al., 2015). Moreover, the vascular system plays
a major role in aging and associated neurodegenerative processes
(Zacchigna et al., 2008; Quaegebeur et al., 2011; Iadecola, 2013).
Capillary density loss and other vascular abnormalities have
been consistently observed in healthy aging, AD, leukoaraiosis
(LA) and HD (Brown and Thore, 2011; Wolf et al., 2011b).
Damage to vascular network integrity leads to MP clearance
deficits and resultant deposition. For instance, the efflux across
the blood-brain barrier (BBB) contributes Aβ clearance (Deane
et al., 2009; Qosa et al., 2014). Qosa et al. (2014), reported
that around a 60% of soluble Aβ40 is cleared across BBB while
the remaining is cleared by brain degradation. Consistent

with this thesis, a significant age-dependent BBB permeability
breakdown, that correlates with cognitive dysfunction, has
been observed in human hippocampus (Montagne et al.,
2015; see Figure 4A). Such aging effects have a crucial impact
on BBB-mediated MP clearance and deposition (Iadecola,
2015; see Figure 4B), contributing to structural, functional
and metabolic connectional deregulation in a continuous
degenerative cycle. In addition, brain neuroinflammation
is characteristic feature during neurodegeneration (Streit
et al., 2004; Block et al., 2007; Lull and Block, 2010). It is
particularly associated to microglia cells activity, which reacts
defensively in respond to different events, such as infection,
brain injury or associated autoimmune processes (Gendelman,
2002). Under certain pathologic conditions (ex. presence of
environmental toxins or neuronal damage), microglias can
enter to a hyperactivation state and release excessive reactive
oxygen species (ROS), which cause neurotoxicity and cell death
(Block et al., 2007; Lull and Block, 2010). Then, local pathologic
effects associated to microglia-mediated neuroinflammatory
processes may impact other connected areas. Similarly that
with the region-region transmission of previously mentioned
aberrant factors (ex. MP, toxic neuronal/synaptic signals,
metabolic deregulation, BBB damage), functional/metabolic
impairment and neuronal death in a given brain region, due to
neuroinflammation and ROS, may alter its vascular, functional,
metabolic and anatomical links, and gradually the multi-factorial
subnetworks associated to the connected regions, extending the
negative neuroinflammatory effects across the interconnected
brain.
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Discussion and Conclusions

Converging evidence supports the central role of brain
connectivity in neurodegenerative progression. Abnormal
connectivity might not only be involved in the propagation of
downstream effects, it might also support upstream pathologic
causes (Pievani et al., 2014). This supports the strategic
importance of understanding the role of brain connectivity in
disease evolution. Notably, the finding of patterns of pathology
that reflect known structural connectivity, suggests the active
role of specific epicenter nodes during the disease processes (e.g.,
deregulated genes, cell assemblies, and/or gross regions). In social
networks, the presence of individuals with a disproportionately
large number of contacts (social hubs) accelerates considerably
the spread of infectious disease (Newman, 2002; Lloyd-Smith
et al., 2005; Leventhal et al., 2015). This hub-centric behavior
could be also be a feature of intra-brain pathologic propagations,
not only limited to neurodegeneration but also present in other
disorders (e.g., schizophrenia, epilepsy, Asperger’s syndrome). A
recent meta-analysis study of 26 different brain diseases showed
that disease-specific structural lesions were mainly located on

FIGURE 5 | Gray matter lesions identified on 26 clinical brain disorders
impact mainly on the structural and functional hub regions. (A) Nodes
of the normative structural connectome, represented in anatomical space,
with nodes size reflecting connectivity degrees. (B) Spiral representation of the
region vulnerability vs. hubness relationship. Nodes of similar degree are
arranged in the same circle, and the different circumferences arranged so that
the tip of the spiral has the highest degree hub nodes, while the base the most
peripheral nodes. Nodes sizes are proportional to their connectional degree,
with colors reflecting each region’s lesioned percentage. The strongest 0.1%
of edges between nodes, which highlight pairs of nodes with consistently high
number of streamlines interconnecting them, are shown for illustrative
purposes. (C) Plot of the probability of lesion voxels (y-axis) vs. connectivity
degree for structural connectome nodes (x-axis). The red line is a fitted logistic
regression model. (D) Plot of the probability of lesion voxels (y-axis) vs. the
degree of the functional co-activation network nodes (x-axis). Figure adapted
from Crossley et al. (2014), with permission.

connectivity hub regions (see Figure 5). This hub vulnerability
could be a consequence of the high topological centrality and
biological cost of the hubs, that make them more sensitive to a
diverse range of pathogenic processes (Crossley et al., 2014). In
addition, we showed that brain regions with a higher degree of
anatomical connectivity experience early Aβ arrival and larger
periods of Aβ exposition (Figure 3B; Iturria-Medina et al., 2014),
which, in addition to excessive connectivity-dependent neuronal
activity (de Haan et al., 2012), explains the higher Aβ deposition
levels found on functional hubs (Buckner et al., 2009).

In spite of its biological relevance, it is not totally clear
yet how to quantify the role of dynamic connectivity in
disease evolution. For instance, although MP propagation have
been modeled and studied by means of diffusion networks
(Raj et al., 2012) and epidemic-like spreading (Iturria-Medina
et al., 2014), the predictive power of these models still needs
further validation. Similarly, there are promising advances in
the modeling and understanding of neuronal/synaptic spreading
across structural networks (Sotero et al., 2007; Valdes-Sosa et al.,
2009; Sanz-Leon et al., 2013, 2015; Messé et al., 2015), but
thesemethodologies also require additional predictive validation.
Increasing evidence supports that gender have a substantial
impact on structural and functional brain connectivity (Gong
et al., 2011), which have been suggested to explain specific
gender-related cognitive differences (Ingalhalikar et al., 2014).
Gender is also associated to the risk of develop specific
neurodegenerative diseases. For example, women are more likely
to develop AD than men (Farrer et al., 1997; Damoiseaux
et al., 2012), whereas men present a significant higher risk to
develop PD (Wooten et al., 2004). Thus, in order to reach
a realistic operational model of dynamic brain organization
during aging and degeneration, it is essential to clarify how
gender-related differences, from genetic, molecular, structural
and/or functional levels, might modulate the role of brain
connectivity in disease development and progression. I addition,
it is still unclear if a given connectivity change should be
interpreted as the result of a pathologic induced alteration
or as the outcome of a compensatory change. The current
lack of multi-factorial trajectory analysis and particularly the
absence of robust causal models of disease progression, make
still unfeasible to discriminate between connectivity associated
upstream and downstream effects. A decreased connection could
be reflecting either a pathologic alteration or a counteracting
compensation mechanism, whereas an increased connection
could be responding either to a compensatory mechanism
or to a pathologic spreading effect. Importantly, it is also
unclear how our understanding of the role of connectivity in
disease progression could be translated into the development of
effective therapeutic strategies. As Zhang et al. (2013) point out,
targeting highly-connected genes in deregulated gene networks
may be effective in disrupting disease-related networks for the
purpose of therapy, but that could be at the cost of unknown
adverse effects. How to diminish the outcome of negative effects
after possible therapeutic interventions is still the subject of
much scientific debate, Computer simulation modeling could
help considerably the exploration of the effects of intervention
strategies. For example, Proctor et al. (2013) modeled DNA
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damage, p53/GSK3 regulation, Aβ and tau dynamics to predict
the intervention effects of Aβ immunization. However, in order
to extend the simulation analyses, we will need a deeper
understanding of the genetic, protean, metabolic, vascular,
functional and structural aberrant interactions associated with
aging and neurodegeneration.
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